Below we detail the process of deploying the PSS.LMC and using it to control a cheetah
pipeline on a physical server.

Firstly, on the physical server (in this case, dokimi) we have a user called cheetah and in this
user’s home area we have a build of cheetah and its dependencies (panda and astrotypes).

whoamil
cheetah

$ pwd

/home/cheetah
$ 1ls
install cheetah.sh

From here, we can launch a cheetah pipeline. Here we are running it to see the help menu (note
the path to the executable - we’ll need this shortly).




Now, assuming we’ve clone the ska-pss-Imc repo and have a running minikube environment
somewhere (in this case, also dokimi), we have configure our PSS.LMC deployment such that it
can control processes on the host. The first thing we need to do is edit the helm chart to tell
PSS.LMC which machine we want to run cheetah on. We find this file in
charts/ska-pss-Imc/data/psspipelinectrl.yaml. We can edit it to reflect our requirements as
follows.

instances:
HELER
classes:
name:
devices:
HELIER
properties:
name:
values:

name:
values:

name:
values:

name:
values:

name:
values:

name:
values:

name:
values:

name:
values:

name:
values:

name:
values:

Note that we specify a few things here. The hostname of the server on which cheetah will run,
and the path to the cheetah executable that we showed above. We also set other command line
arguments that this executable needs to run a pipeline. If one were to manually run cheetah
from a CLI, we would need to specify the data source, the pipeline type (single-pulse search,
acceleration search, etc), and the cheetah logging level. These parameters are also set in this
helm chart. Note that we set the pipeline type to be “Empty”, as for this demonstration we do not



want to actually process any data. Finally we set the username and password for the user
(cheetah) that will own the cheetah pipeline process. Password has been redacted.

Once we have configured our LMC deployment we can make the LMC container image(s) [For
further details, see the LMC documentation] by running:

$ make oci-build
Now if we run
$ docker image Is

We can see the LMC images that have been created and these will be deployed into K8s pods
into a PSS.LMC namespace.

Now we can deploy the LMC.
$ make k8s-install-chart
and we can watch it springing to life if we want...

$ watch kubectl get all -n ska-pss-Imc

. STATUS RESTARTS AGE
ployment-0 / Running 0 4m42s
-ds-tango-databas 5 -0 / Runninc 0 4m35s

angodb-tango-databaseds-0 / Runni 4m42s

)
) 4m9s

5 ctrl-ctrll-0 Running
s-tangotest-t L/ unning ¢
/ska-tango-base-itango-console Runninc 0]

CLUSTER-IP

Next we can connect to the itango-console pod and begin controlling the psspipelinectrl-ctrl1-0
device, which will in turn control the cheetah pipeline on dokimi.

$ kubectl exec -it ska-tango-base-itango-console -n ska-pss-Imc -- itango3

This will give us an itango interface from which we can connect to CTRL.



pss = tango.DeviceProxy

pss.adminMode =

pss.obsstate
<obsState.IDLE: 2>

Now we can create a scheduling block (json) which LMC will use to create an XML configuration
for the cheetah pipeline. This set of parameters will instruct cheetah to start a single beam, and
wait for data. We’'ll never pass it any, so it will wait indefinitely until it is killed. Here goes.

Now if we look in cheetah’s home area on dokimi, we’ll find a cheetah config file.

which looks like this...




Next we can start the “scan”. This will execute cheetah, with the above configuration.

pss.scan('11l")
[array([2], dtype=int32), ['1724233844.1861312 106537744358988 Scan']]

pss.obsstate
<obsState.SCANNING: 5>

...and if we look at the user cheetah’s processes on dokimi, we can see that cheetah is running
and using our config.

and if we want to look at the cheetah logs, we can do that too.

Now back to our tango console we can end the scan

9 pss.endscan()
9 [array([2], dtype=int32), ['1724234039.7942638 239495664793629 EndScan']]

10 pss.obsstate
10 <obsState.READY: 4>

Now back to dokimi, we’ll see that cheetah is no longer running.

...and back to tango again, and we can shut things down.



pss.abort()
[array([1], dtype=int32), ['1724234177.742667 114322257637602 Abort']]

pss.obsstate
<obsState.ABORTED: 7>

pss.obsreset()
[array([2], dtype=int32), ['1724234198.9401278 68800942745954 ObsReset']]

pss.obsstate
<obsState.IDLE: 2>




