
Draft version August 14, 2023

Typeset using LATEX preprint style in AASTeX63

FFT algorithm review from the literature

Bettina Posselt

ABSTRACT

This report comprises the following: (i) a brief reminder about the Discrete Fourier
Transform and Fast Fourier Transform, (ii) what is FFTW, (iii) which algorithms are
currently implemented in Cheetah, (iv) summary of literature on Fast Fourier Trans-
form algorithms and possibilities to improve the Cheetah implementation, e.g., with a
streaming Fast Fourier Transform.

1. REMINDER DFT AND FFT

Among the multitude of literature on Fourier techniques, e.g., van der Klis (1989) and Ransom
et al. (2002) provide detailed introductions with an astrophysical (and pulsar) context, while Olson
(2017) represents a more general textbook on this topic. Here, only a very brief summary is given.
The Discrete Fourier Transform, DFT, of a signal (time series) xj with N measurements (j =
0, 1, . . . , N − 1) is defined by k (k = 0, 1, . . . , N − 1) complex Fourier coefficients:

Ak =
N−1∑
j=0

xj e−2πijk/N , (1)

where i =
√
−1. k is also called the Fourier frequency or wavenumber. Together they form the DFT.

It is typically assumed that the time series xj is uniformly spaced. Mathematically, the equation 1 is
the same as a matrix vector product where the matrix is e−2πijk/N with N×N elements and the vector
is xj with N elements. Since N Aks need to be calculated, this requires N2 steps. Calculating those
directly as described in equation 1 is sometimes called a “brute-force” Fourier transform algorithm.

The Fast Fourier Transform, FFT, reduces the required calculation to N log2(N) steps, a huge
difference for large N . This is achieved by convenient rewriting of the sums. For this, the following
relations are helpful: e−2πiz = 1 for any integer z, and A−k = A∗

k where A∗
k is the complex conjugate.

The best-known FFT algorithms use factorisation of N , e.g., by following the methods by Cooley &
Tukey (1965). For instance, one writes the sums for Ak as two sums of odd and even numbers (one
additionally assumes that N is a power of two, then j = j1 + j2 in 1, with j1 = 2m and j2 = 2m + 1
and m = 0, ..., (N − 2)/2). One obtains a (N/2 − 1) sum over the even xj1 and a (N/2 − 1) sum
over the odd xj2, the latter are multiplied with a complex “twiddle factor” (e−2πik/N). Thus, one has
reduced the N DFT to two N/2 DFTs.

More generally, in the Cooley-Tukey factorization one expresses N = NrNc and defines j = j1Nc+j2
(j1 = 0, . . . , Nr − 1; j2 = 0, . . . , Nc − 1) and k = k1 + k2Nr (k1 = 0, . . . , Nr − 1; k2 = 0, . . . , Nc − 1).
Using these definitions with equation 1 and simplifying (see, e.g., Ransom et al. 2002), one obtains Nc

DFTs of length Nr multiplied with a twiddle factor as inner term of the overall sum expression. Then



2

an outer sum is performed which is Nr DFTs of lengths Nc. The final result is actually a transposed
version of equation 1. One basically transforms a 1d DFT of size N into a 2d DFT of size Nr ×Nc.
There are various other FFT methods. For instance, one can use the prime-factor (Good-Thomas)
algorithm if N can be factorised into two (different) prime numbers. Bruun’s algorithm or Winograd
algorithm use different polynomial-factorization approaches to the DFT.

1.1. Why are there different FFT algorithms?

Besides reducing the number of calculations, the speed of a FFT with a computer also depends on
how the cache memory is handled. Memory is restricted, and thus it may be wiser to intelligently
overwrite existing arrays (e.g., the time series at start) – called in-place algorithm – than creat-
ing (one or several) new distinct arrays – called out-of-place algorithm. The latter often requires
auxillary storage. In addition, it matters how the individual elements in the array are accessed in
the memory, either consecutively (fastest performance) or in a scattered manner (less efficient). For
in-place algorithms in particular, one must therefore choose carefully when which element should be
calculated. Reordering, e.g., by specific permutations of the array elements (such as bit-reversal in
case of N = 2N2) can maximize (cache) memory access speed. Since the optimisation of FFT speed
depends on the hardware specifics as well as the size of the signal array (i.e., the size of the DFT and
possibilities of factorisation), there exist many different FFT algorithms. A Cooley-Tukey FFT can
be implemented as a recursive, so-called “divide-and-conquer” algorithm, where the 2d matrix can
be broken up into smaller pieces to optimally use the cache.

2. WHAT IS FFTW?

The Fastest Fourier Transform in the West (FFTW) was developed by Frigo & Johnson (1998).
Version 3.3.10 (Sep 15th, 2021) is the latest stable release of FFTW3 (Frigo & Johnson 2005), and
many details, references, and links can be found at http://www.fftw.org. FFTW consists of many
highly optmized blocks of C-code, codelets (containing, e.g., different FFT algorithms for transform
sizes of various lengths). In the planning stage, these codelets are combined for a FFT of size N ,
taking the computing architecture into account, with various combinations and orders summarized
as experimental plans. The execution speeds of these different plans (or experiments) are compared,
and the most optimal plan is chosen. The actual (many) FFTs (all of size N) can then be executed
according to this optimal plan. This machine-generated, performance-optimised code is adaptive to
the hardware and can differ for different machines. When the FFTs are executed, the size of the cache
does not need to be given. FFTW can do arbitrary-size transforms, parallel transforms (threads,
distributed-memory transforms). It is free and portable using a C compiler. The FFTW-specific
wisdom is a method for saving plans to disk and restoring them. There are different levels/flavours
in the planning method, requiring a different running time in the preparation phase. The wisdom
mechanism makes FFTW very efficient in use, but needs to be evaluated again if hardware or other
conditions change.

3. IS FFTW USED IN CHEETAH?

Cheetah loads FFTW3 version 3.3.7-1 (at least on tengu and hippa) from 2017. The latest version,
3.3.10, has some minor(?) bug fixes https://www.fftw.org/release-notes.html. Searching for ‘fftw’
in the cheetah source code, I only found it in module PWFT, generator PulsarInjection.cpp, and in
utils ConvolvePlan.cpp, but not in the FFT or CXFT modules. The latter two seem not to load def-
initions from PWFT, ConvolvePlan, or PulsarInjection either. Some algorithm ’plans’ are compared

http://www.fftw.org
https://www.fftw.org/release-notes.html


3

however. I did not find any fftw3 export/import wisdom calls, hence I suspect no FFTW-wisdom is
saved/loaded anywhere at the moment.

From FftAlgos.h, it seems that only a cuda-fft and an altera-fft exist. The former is GPU-based,
the latter FPGA-based (Intel FPGA OpenCL FFT interface). I don’t see an existing CPU-based
FFT. The cuda-fft uses Nvidia’s cuFFT library which is modelled after FFTW, but works on GPUs
(interestingly, it also mentions “Streamed execution”). Similarly to FFTW, it creates an optimized
plan after experimenting with different FFT setups for the given specifications. The Cheetah TDAS
code was written by E. Barr. Hence, there may be similarities of Cheetah’s FFT-module with the
code by (Barr 2020).

4. SOME LITERATURE FFTS THAT MAY BE RELEVANT FOR CHEETAH

It is interesting whether there is a faster (preferably free) FFT algorithm which could be used
in Cheetah for the FFT or CXFT modules. A streaming FFT could be particularly interesting.
We decided to concentrate on CPU and GPU algorithms, not FPGA-based ones. Looking for
comparisons with FFTW3 seems to be the best starting point to find other high-performance
algorithms. Benchmarking was done for FFTW and various other FFT algorithms as listed
at http://www.fftw.org/benchfft/ffts.html. However, the most recent algorithm on the FFTW-
list is from 2006. I found several newer codes. Examples (just C/C++) are listed on URL
https://community.vcvrack.com/t/complete-list-of-c-c-fft-libraries/9153. However, no benchmark-
ing or comparisons are provided there.

Several times, I came across the FFTE, the Fastest Fourier Transform of the East. Nikolić et al.
(2014) compared the performances of FFTE and FFTW on different supercomputers and find better
scalability of FFTW (speedup larger if more CPU cores are included), but faster execution times of
FFTE (for < 256 CPU cores). Nikolić et al. (2014) also noted, however, that the FFTE is badly
documented.

More comprehensive is the recent comparison of different FFT algorithms (run on a supercom-
puter) by Ayala et al. (2021) (“Interim report on benchmarking FFT libraries on high performance
systems”). They differentiate between CPU and GPU-based algorithms, list the licenses, and com-
pare performance in dependance of node numbers. Although nodes refer to individual computers with
multiple cores each, comparison of the node= 1 numbers can give us a good idea about the expected
relative performance for our work. The quality of the documentation of each algorithm remains
unclear at the moment and would require further checks if we decide to explore further. The paper is
included in the shared google drive. Below are FFT library overview tables (Fig. 1 and 2) and figure
excerpts from Ayala et al. (2021) to give an idea about the content. Figure 3 shows the performance
comparisons for CPU-based libraries, Figure 4 for GPU-based libraries. Although the main focus
of Ayala et al. (2021) is navigating the ‘communication bottleneck’ for multi-nodes/multi-processors
by their experiments (scaling to many nodes), there are some general conclusions which may be of
interest to us: (i) The GPU runs are about 2× faster than the CPU runs for the same number of
nodes used; (2) Performance-wise, ”...for CPU-based runs there are two groups: the best performing
ones are AccFFT, heFFTe, FFTMPI, FFTE, SWFFT, and 2De-comp&FFT. The second group is
2−3× slower with P3DFFT and FFTW. For GPU-based runs, the best time is achieved by heFFTe,

http://www.fftw.org/benchfft/ffts.html
https://community.vcvrack.com/t/complete-list-of-c-c-fft-libraries/9153


4

Figure 1. Table 1.1 by Ayala et al. (2021). Strided data means that the data elements are not stored in
consecutive memory locations but have a fixed ”stride” between them. This helps with cache use optimisation
and parallelisation.

Figure 2. Table 1.2 (distributed FFT libraries) by Ayala et al. (2021)

followed closely by AccFFT, and FFTE is about 2× slower...”. AccFFT was presented by Gholami
et al. (2016). On its github, https://github.com/amirgholami/accfft nothing has changed for 5 years.
heFFTe (Tomov et al. 2019) was developed in the US Department of Energy’s Exascale Computing

https://github.com/amirgholami/accfft


5

Figure 3. left : six CPU libraries going from pencil-shaped input to pencil-shaped output, right: using
only 32 cores by node because some libraries are size-constrained. Ayala et al. (2021) start from 3D FFTs
(tensors) that are decomposed (reshaped) either into 1D slabs, 2D pencils, or 3D bricks to enable parallelised
processing. Some libraries can only handle specific shapes with multiple processors/nodes.

Figure 4. GPU-based libraries by Ayala et al. (2021)

Project. according to Ayala et al. (2021), heFFTe supports the most single-device backends and en-
ables parallel FFT computations on AMD, Intel, and NVIDIA GPUs, and it includes several features
missing by other state-of-the-art libraries. The project is presented on https://icl.utk.edu/fft/, the
github link is https://github.com/icl-utk-edu/heffte, and there were updates 2 weeks ago. On a first,
quick glance, it looks reasonably well documented. I think it would be worth evaluating (free and
easy to install?, ease of use?, benchmark) heFFTe in more detail for PSS-use to see if we could gain
a factor 2 in performance, especially because heFFTe can handle CPU and GPU processing.

4.1. What is about streaming FFT algorithms?

A streaming FFT computes the FFT of continuously arriving data without needing to buffer or store
the entire input before processing. I failed to find a good reference for a recent free streaming FFT
code for CPU (but see paragraph at the end of this section). For GPUs, I noted that CuFFT men-
tions “Streamed cuFFT Transforms” (https://docs.nvidia.com/cuda/cufft/index.html?highlight=
streaming#streamed-cufft-transforms). Apparently, different CUDA streams can be handled (with
FFTW-like plans), with details on such streams described in the CUDA C++ Programmming Guide.
That CuFFT is doing a streaming FFT seems to agree with Lobeiras et al. (2011) (pdf in google
drive) who compared a different streaming FFT with an earlier version of CuFFT (with CuFFT

https://icl.utk.edu/fft/
https://github.com/icl-utk-edu/heffte
https://docs.nvidia.com/cuda/cufft/index.html?highlight=streaming#streamed-cufft-transforms
https://docs.nvidia.com/cuda/cufft/index.html?highlight=streaming#streamed-cufft-transforms


6

doing best of all for large transforms). Further improvements were suggested by Zhao et al. (2023)
(pdf in google drive). Their large-scale FFT framework, MFFT, which optimizes parallel FFT with
a new mixed-precision optimization technique, outperforms the above mentioned heFFTe (AMD
GPU-based version) by a factor 9! However, I don’t see any open source code reference or github
link for this recent Chinese work, nor any independent check.

Most literature on streaming FFT seems to deal with the implementation via Field-Programmable
Gate Arrays (FPGAs). A useful overview about this is provided by Chen (2017), a 2017 PhD thesis
on ”Optimal Designs for High Throughput Stream Processing using Universal RAM-based Permu-
tation Network” (pdf in google drive). Another helpful FPGA reference for FPGA-based streaming
FFT is Serre & Püschel (2018).

I explored the idea of using alternatively “sparse FFTs” (Gilbert et al. 2014 provides some overview,
pdf in google drive) because I noticed its mentioning for streaming data or large data. However, a
sparse FFT assumes a lot of ”meaningless” data, i.e., zeroes, which I think, is not exactly what we
have.

Finally, I gave ChatGPT a try (transcript of questions/answers provided on google drive). Chat-
GPT gave the information that “...one popular streaming FFT algorithm is the ”Sliding DFT”
[SDFT] algorithm...”. Other names for it could be ”Overlap-save” or ”Overlap-add” method. I was
wondering whether one could combine a FFT, say FFTW, with a sliding window (e.g., for half or
quarter of the data). ChatGPT’s answer was not very useful. It is maybe worth noting that the
AI’s information is stuck at September 2021 (at least for the open version that I used). I checked
very briefly for a few publications on SDFT, some useful standard ones are e.g., Rafii (2018); Grado
et al. (2017); Jacobsen & Lyons (2003), an example comparison with FFT was given by Kumar
et al. (2015), a SDFT with some astronomical context is in Böhlen & Saad (2019) (all pdfs in google
drive). Apparently, the sliding DFT can be very efficient, working recursively and scaling with N
instead of N logN . However, there occurs spectral leakage due to the rectangular (sliding) window.
It would require further reading, but possibly combining FFT with such a sliding window approach
might be worth exploring if other (easier?) options (heFFT, CuFFT) don’t perform sufficiently in
the benchmarking.



7

REFERENCES

Ayala, A., Tomov, S., Luszczek, P., et al. 2021, 1
Barr, E. 2020, Peasoup: C++/CUDA GPU pulsar

searching library, Astrophysics Source Code
Library, record ascl:2001.014.
http://ascl.net/2001.014

Böhlen, M. H., & Saad, M. 2019, in Leibniz
International Proceedings in Informatics
(LIPIcs), Vol. 147, 26th International
Symposium on Temporal Representation and
Reasoning (TIME 2019), ed. J. Gamper,
S. Pinchinat, & G. Sciavicco (Dagstuhl,
Germany: Schloss Dagstuhl–Leibniz-Zentrum
fuer Informatik), 1:1–1:4,
doi: 10.4230/LIPIcs.TIME.2019.1

Chen, R. 2017, PhD thesis, University of Southern
California

Cooley, J. W., & Tukey, J. W. 1965, Mathematics
of Computation, 19, 297,
doi: 10.1090/S0025-5718-1965-0178586-1

Frigo, M., & Johnson, S. G. 1998, in Proc. 1998
IEEE Intl. Conf. Acoustics Speech and Signal
Processing, Vol. 3 (IEEE), 1381–1384

Frigo, M., & Johnson, S. G. 2005, Proceedings of
the IEEE, 93, 216

Gholami, A., Hill, J., Malhotra, D., & Biros, G.
2016, AccFFT: A library for
distributed-memory FFT on CPU and GPU
architectures. https://arxiv.org/abs/1506.07933

Gilbert, A. C., Indyk, P., Iwen, M., & Schmidt, L.
2014, IEEE Signal Processing Magazine, 31, 91,
doi: 10.1109/MSP.2014.2329131

Grado, L. L., Johnson, M. D., & Netoff, T. I.
2017, IEEE Signal Processing Magazine, 34,
183, doi: 10.1109/MSP.2017.2718039

Jacobsen, E., & Lyons, R. 2003, IEEE Signal
Processing Magazine, 20, 74,
doi: 10.1109/MSP.2003.1184347

Kumar, N., Mehra, D. R., & Sharma, b. 2015,
International Journal of Engineering Trends and
Technology, 30, 346,
doi: 10.14445/22315381/IJETT-V30P264

Lobeiras, J., Amor, M., & Doallo, R. 2011, in

Proceedings of the 19th International

Euromicro Conference on Parallel, Distributed

and Network-based Processing, PDP 2011, Ayia

Napa, Cyprus, 9-11 February 2011, ed.

Y. Cotronis, M. Danelutto, & G. A.

Papadopoulos (IEEE Computer Society),

119–126, doi: 10.1109/PDP.2011.31

Nikolić, M., Jovic, A., Jakić, J., Slavnić, V., &

Balaz, A. 2014, 2, 163,

doi: 10.1007/978-3-319-01520-0-20

Olson, T. 2017, Applied Fourier Analysis: From

Signal Processing to Medical Imaging (Springer

New York). https://link.springer.com/book/10.

1007/978-1-4939-7393-4

Rafii, Z. 2018, IEEE Signal Processing Magazine,

35, 88, doi: 10.1109/MSP.2018.2855727

Ransom, S. M., Eikenberry, S. S., & Middleditch,

J. 2002, AJ, 124, 1788, doi: 10.1086/342285

Serre, F., & Püschel, M. 2018, in Proceedings of

the 2018 ACM/SIGDA International

Symposium on Field-Programmable Gate

Arrays, FPGA ’18 (New York, NY, USA:

Association for Computing Machinery),

2192̆013228, doi: 10.1145/3174243.3174263

Tomov, S., Haidar, A., Ayala, A., Schultz, D., &

Dongarra, J. 2019

van der Klis, M. 1989, in NATO Advanced Study

Institute (ASI) Series C, Vol. 262, Timing

Neutron Stars, ed. H. Ögelman & E. P. J. van

den Heuvel, 27,

doi: 10.1007/978-94-009-2273-0 3

Zhao, Y., Liu, F., Ma, W., et al. 2023, ACM

Trans. Archit. Code Optim., 20,

doi: 10.1145/3605148

http://ascl.net/2001.014
http://doi.org/10.4230/LIPIcs.TIME.2019.1
http://doi.org/10.1090/S0025-5718-1965-0178586-1
https://arxiv.org/abs/1506.07933
http://doi.org/10.1109/MSP.2014.2329131
http://doi.org/10.1109/MSP.2017.2718039
http://doi.org/10.1109/MSP.2003.1184347
http://doi.org/10.14445/22315381/IJETT-V30P264
http://doi.org/10.1109/PDP.2011.31
http://doi.org/10.1007/978-3-319-01520-0-20
https://link.springer.com/book/10.1007/978-1-4939-7393-4
https://link.springer.com/book/10.1007/978-1-4939-7393-4
http://doi.org/10.1109/MSP.2018.2855727
http://doi.org/10.1086/342285
http://doi.org/10.1145/3174243.3174263
http://doi.org/10.1007/978-94-009-2273-0_3
http://doi.org/10.1145/3605148

	Reminder DFT and FFT
	Why are there different FFT algorithms?

	What is FFTW?
	Is FFTW used in Cheetah?
	Some literature FFTs that may be relevant for Cheetah
	What is about streaming FFT algorithms?


