

The University of Manchester

SP-1879: Create set of PSS test vectors for the SPS pipeline

Lina Levin Preston for the PSS Team 17 November 2021

Team PSS

University of Oxford

Aris Karastergiou (PO) Arun Naidu Christopher Williams

Raman Research Institute

Prabu Thiagaraj

University of Manchester

Atul Ghalame Michelle Hussey Mitch Mickaliger Vincent Morello Mike Pearson (SM) Lina Levin Preston Benjamin Shaw Ben Stappers (PO)

Test Vectors

- 4-D Data cube signal intensity vs time, frequency, polarisation.
- Examples of real astrophysical signals (periodic (pulsars) and transient (FRBs, GP, RRATs)).
- SKA sized test vectors are up to 36GB based on current requirements.
- Crucial for
 - demonstrating pipeline performance
 - demonstrating compliance to system requirements
 - ad-hoc/unit/system/pipeline testing

Define SPS test vector parameters

Pulse parameters for the SPS test vector set:

- 2 pulse periods: 5, 8 s
- 10 DMs: 1, 100, 370, 500, 740, 1000, 1480, 2000, 2950, 3000 pc/cm³
- 5 pulse widths: 100 µs, 1 ms, 10 ms, 100 ms, 1 s
- 3 S/N values: 20, 30, 50

Relevant requirements:

SKAO-CSP_Mid_PSS_REQ-13: CSP_Mid.PSS Single Pulse search CSP_Mid.PSS shall, as part of the Pulsar Search, search for individual pulses with dispersion measures from 0 to 3000 pc cm⁻³ and with widths from 100 microseconds to 1 second.

SKAO-CSP_Low_PSS_REQ-14: CSP_Low.PSS Single Pulse search

CSP_Low.PSS shall, as part of the Pulsar Search, search for individual pulses with dispersion measures from 0 to 3000 pc cm⁻³ and with widths from 100 microseconds to 1 second.

Create SPS test vector set

[llevin@dokimi plots]\$ ls -1 /skatvnas3/doc root/testvectors/SPS-MID/ latest SPS-MID 747e95f 0.125 0.000125 1000.0 0.0 Gaussian 20.0 123123123.fil SPS-MID 747e95f 0.125 0.000125 1000.0 0.0 Gaussian 30.0 123123123.fil SPS-MID 747e95f 0.125 0.000125 1000.0 0.0 Gaussian 50.0 123123123.fil SPS-MID 747e95f 0.125 0.000125 100.0 0.0 Gaussian 20.0 123123123.fil SPS-MID 747e95f 0.125 0.000125 100.0 0.0 Gaussian 30.0 123123123.fil SPS-MID 747e95f 0.125 0.000125 100.0 0.0 Gaussian 50.0 123123123.fil SPS-MID 747e95f 0.125 0.000125 1.0 0.0 Gaussian 20.0 123123123.fil SPS-MID 747e95f 0.125 0.000125 1.0 0.0 Gaussian 30.0 123123123.fil SPS-MID 747e95f 0.125 0.000125 1.0 0.0 Gaussian 50.0 123123123.fil SPS-MID 747e95f 0.125 0.000125 1480.0 0.0 Gaussian 20.0 123123123.fil SPS-MID 747e95f 0.125 0.000125 1480.0 0.0 Gaussian 30.0 123123123.fil SPS-MID 747e95f 0.125 0.000125 1480.0 0.0 Gaussian 50.0 123123123.fil SPS-MID 747e95f 0.125 0.000125 2000.0 0.0 Gaussian 20.0 123123123.fil SPS-MID 747e95f 0.125 0.000125 2000.0 0.0 Gaussian 30.0 123123123.fil SPS-MID 747e95f 0.125 0.000125 2000.0 0.0 Gaussian 50.0 123123123.fil SPS-MID 747e95f 0.125 0.000125 2950.0 0.0 Gaussian 20.0 123123123.fil SPS-MID 747e95f 0.125 0.000125 2950.0 0.0 Gaussian 30.0 123123123.fil SPS-MID 747e95f 0.125 0.000125 2950.0 0.0 Gaussian 50.0 123123123.fil SPS-MID 747e95f 0.125 0.000125 3000.0 0.0 Gaussian 20.0 123123123.fil SPS-MID 747e95f 0.125 0.000125 3000.0 0.0 Gaussian 30.0 123123123.fil SPS-MID 747e95f 0.125 0.000125 3000.0 0.0 Gaussian 50.0 123123123.fil SPS-MID 747e95f 0.125 0.000125 370.0 0.0 Gaussian 20.0 123123123.fil SPS-MID 747e95f 0.125 0.000125 370.0 0.0 Gaussian 30.0 123123123.fil SPS-MID 747e95f 0.125 0.000125 370.0 0.0 Gaussian 50.0 123123123.fil SPS-MID 747e95f 0.125 0.000125 500.0 0.0 Gaussian 20.0 123123123.fil SPS-MID 747e95f 0.125 0.000125 500.0 0.0 Gaussian 30.0 123123123.fil SPS-MID 747e95f 0.125 0.000125 500.0 0.0 Gaussian 50.0 123123123.fil SPS-MID 747e95f 0.125 0.000125 740.0 0.0 Gaussian 20.0 123123123.fil SPS-MID 747e95f 0.125 0.000125 740.0 0.0 Gaussian 30.0 123123123.fil SPS-MID 747e95f 0.125 0.000125 740.0 0.0 Gaussian 50.0 123123123.fil SPS-MID 747e95f 0.125 0.00125 1000.0 0.0 Gaussian 20.0 123123123.fil SPS-MID 747e95f 0.125 0.00125 1000.0 0.0 Gaussian 30.0 123123123.fil SPS-MID 747e95f 0.125 0.00125 1000.0 0.0 Gaussian 50.0 123123123.fil 747e95f 0.125 0.00125 100.0 0.0 Gaussian 20.0 123123123.fil

The SPS test vector set:

- 300 test vectors:
 - 60 second integration time
 - 4096 frequency channels
 - 64 µs time resolution
 - 8-bit samples.
- 3.84 GB/file = 1.152 TB

Test Vector Generator:

https://gitlab.com/ska-telescope/pss-test-vectorgenerator/

Input parameters for vector:

- DM = 100 pc/cm³
- Period = 5 s
- Pulse width = 1 µs
 => <2 bins

=> single pulse S/N ~14

Validate SPS test vectors

Validation steps:

- Run SPS parts of PSS Gold Standard matlab code
 - RCPT: read in test vector data
 - RFIM: remove interference (mask channels)
 - DDTR: de-disperse data at given DM steps
 - SPDT: search each time series for single pulses
 - SPSIFT: remove duplicate single pulse detections
- Compare output detection lists with input parameters

PSS Gold Standard MatLab model:

https://gitlab.com/SKA-TDT/tdt-matlab-models

PSS Signal Model document:

https://www.dropbox.com/s/sv86txc0zkwmx7f/SKA-TEL-CSP-0000085_5_PSSSignalMod el_Mickaliger_2018-09-04%20-%20signed.pdf?dl=0

Validate SPS test vectors

Input parameters for vector:

- DM = 100 pc/cm³
- Period = 8 s
- Pulse width = 100 ms
 => 1563 bins
- S/N = 50
 => single pulse S/N ~18

Summary document

https://www.overleaf.com/read/xm rjnskdjfqg

Future work

- We have a plan for how to implement the end-to-end testing framework, with many features already identified.
- Next steps:
 - Implement reverse proxy on University of Manchester machines to enable test vectors to be accessed remotely
 - End-to-end testing will be using pytest, need to develop classes for running Cheetah and parse the output
 - Set up and implement SPS tests in pss-pipeline
 - Further down the line we will also implement tests for FDAS pipeline