
SP-586 Refactor Taranta to improve performance

Taranta front-end performance report
Hélder Ribeiro, Ajaykumar Dubey, Matteo Canzari, Valentina Alberti

Introduction

The work presented in this document has been performed with the goal of improving performances
of running Taranta dashboards as indicated in the feature: “Refactor Taranta to improve
performance” [SP-586]. The results of the benchmarking conducted in [SP-296] showed that the
frontend is mostly responsible for slowing down the performances of the tool. In particular, what
appeared to be critical was the part of the code that dispatches the information coming from the
backend to the frontend: process which was sequential. For each frame of information, the following
chain of functions is executed in subsequent steps. This causes long latencies given that a new frame
can be handled only after all the steps have been completed.

Frame handling sequence of functions: handleNewFrame() -> recordAttribute() -> recordHistory() ->

setNewValues() -> setState() -> render()

This observation is at the basis of the first definition of [SP-586]. While trying to solve the problem by

introducing asynchronous code, performance tests revealed that the actual blocker wasn't the

dispatcher (i.e. recordAttribute step) as previously thought but rather the rendering part. For this

reason, in agreement with the PO and FO the team decided to focus on benchmarking the graphical

library used by Taranta, plotly, and see if it is possible to improve its performance or find an

alternative library to use.

The revised acceptance criteria for the feature are as follows:

● a report is produced describing the current bottleneck hypothesis and how it was
confirmed, with the list of affected widgets and widgets not affected by it

● a description (maybe a section of the above report) describing which plotly part is
responsible for the bottleneck

● reimplementation of at least 1 widget so that the problem disappears; the new
implementation should maintain the current functionality, configurability, look and feel of
the widget to minimize changes to existing dashboards.

We would like to stress the importance of distinguishing between the following 3 areas of the code

which are responsible for performances at the different stages of Taranta use:

1. Edit dashboard section
○ This section of code relates to the user experience while editing an existing

dashboard, by dragging, copying, adding new widgets and so on.
2. Loading dashboard section

○ This section of code relates to the time it takes from a user clicking on the start
button on a dashboard till the moment in which the dashboard is fully available and
displays the desired data.

3. Refreshing dashboard section

https://jira.skatelescope.org/browse/SP-586
https://jira.skatelescope.org/browse/SP-296

○ This section of code relates to the time it takes for a fully working/started dashboard
to update it’s values, for example if we consider a dashboard with 25 widgets, all
displaying a single attribute of value 10, the refreshing time is the time it takes to
update their value to 20 after it changed in the backend.

The results of the study performed within the scope of SP-586 and summarised in this document

mainly refers to the last point, Refreshing dashboard.

Taranta performance analysis

Multithreading as a way to improve Taranta performances

The initial thought was that the sequential behaviour of Taranta dispatcher caused most of the
performance issues seen while using the tool. Multithreading is the alternative that has been
investigated to speed up the process. The best approach we could find in literature is to use Web
Workers. We implemented a prototype and performed a benchmark to verify and quantify the
improvement with respect to the current implementation of the code.
Performance at runtime has been evaluated using Chrome Developer tools. They allow, among other
functionalities, the retrieval of both a summary that highlights the time spent by the dashboard in
performing different tasks during the duration of the test and of a more extensive report via the
Lighthouse tool [Lighthouse]. The summary highlights the time spent by the running dashboard while
performing different tasks such as running scripts or rendering. An example of this summary can be
seen in Figure 1. On the other hand, Lighthouse calculates the performance based on a set of metrics
that have been identified to take into account how the user perceives performance when using the
web. This is a set of six metrics that includes for example the time taken to load the page's main
content (Largest Contentful Paint, LCP) or the time taken to render the first piece of DOM content
after a user navigates to a certain page (see [Lighthouse] for more details on the metrics and how
they are weighted).

Figure 1: Developer tool output example. Lighthouse metrics results are displayed at the bottom.

https://developers.google.com/web/tools/lighthouse
https://developers.google.com/web/tools/lighthouse

The benchmark has been performed as follows:
● We used dashboards with an increasing number of widgets. Each dashboard had multiple

copies of the same widget;
● We investigated both widgets that require plotly and some that don’t;
● We analysed the output of the used developer tools to assess the impact of implementing

Web Workers.

The conclusion is that implementing Web workers doesn’t significantly improve performances for any
of the benchmarked widgets [CT-341]. The lack of multithreading isn’t the current bottleneck for
Taranta, and rather we realized the rendering is. The study also shows that most of the time spent in
rendering is consumed by the Recalculate style functionality of the plotly library and that increasing
the number of plots increases the rendering time.

Figure 2: Configuration of the computer used for the benchmarking of Web workers implementation.

Improving the plotly library

Plotly is the library used by Taranta to create and render graphical widgets such as the Timeline
widget or the Scatter plot widget. It is a quite complete library, built on top of D3.js, that allows for
some customization and functionalities such as zooming and panning. Despite its usefulness, the
performed benchmark identified it as the current bottleneck responsible for reducing performances
or running Taranta dashboards. To highlight this, we analysed the results obtained from the Chrome
Developer tools in the case of dashboards with 100 or 1000 non graphical widgets and dashboards
with 100 plots on it. We iterated on the graphical widgets to cover them all. When graphical widgets
are involved, performances degrade significantly and rendering is the step that requires the longest
time to be completed, see for example Figure 3 and Figure 4.

https://jira.skatelescope.org/browse/CT-341

Figure 3: Performance test results for a dashboard with 100 Attribute Display widgets (doesn’t use
plotly). The idle time value indicates the time during which no processing is happening and the
browser is ready to update widgets with new data coming from the backend.

Figure 4: Performance test for a dashboard containing 100 Scatter plot widgets (uses plotly).
Rendering takes 90% of the total duration of the test (identified by the Total label) while scripting
takes less than 10%. As a result, the idle time is very short and updating widgets with new data takes
longer.

Functions in the plotly library that are mainly responsible for slowing down widgets have been
identified by benchmarking dashboards with 10 and 50 Attribute Plot widgets. The identified lines of
code are:

● /node_modules/plotly.js/src/plot_api/plot_api.js. This is the function
which checks if initial width/height are set and slows down the “Recalculate Style” activity,
see below.

Moreover, increasing the number of widgets on the dashboard from 10 to 50 the benchmark

shows that performances don’t scale linearly, see below table:

Number of widgets % of time spent in scripting % of time spent in rendering

10 Attribute plots 19% 42%

50 Attribute plots 10% 87%

● plotly.js/src/plots/plots.js

This information was useful to identify the next steps in tackling the issue.

Three different strategies have been tried, namely:
1. To assign fix values to width and height in the identified lines of the code [CT-398];
2. To test performances of other libraries to decide whether to use a different one inTaranta

[CT-412];
3. To develop a widget from scratch using svg images or canvas.

1 Results from assigning fix values to width and height in the identified lines of the

code

In plot_api.js we modified the code by setting the above mentioned lines 509 and 510 to
context._hasZeroHeight = 0; and context._hasZeroWidth = 0;
respectively. This change highlighted the problem in plots.js which can be solved by
replacing the code in line 1608 and 1609 with newWidth = 100;and newHeight = 100;
respectively.
The benchmark conducted after implementing these changes didn’t give clear results because, after
resolving the first bottleneck, a list of other possible ones have been identified in the dependent
libraries.For this reason we decided to change our approach.

2 Results from benchmarking other available graph libraries

Different libraries/technologies have been tested with the goal of identifying a possible alternative to
plotly to be used in Taranta. A comparison between the performance of plotly and of each of the

investigated alternatives is shown in Table 1. Canvas and SVG options are discussed in more detail in
the dedicated subsection. All the other libraries adapt D3.js to React.
Values in Table 1 have been obtained by benchmarking different libraries while running a dashboard
with 20 Spectrum widgets. The libraries to be included in the study have been selected among the
best ones reported in literature. The computer setup used for conducting the test is reported in
Figure 6.
The collected data clearly show that none of the tested libraries improves performances significantly.
For this reason substituting plotly with one of those doesn’t seem a sensible solution.

Table 1: Benchmark results: comparison between different solutions. Percentages indicate the ratio
between time spent while performing a task, such as rendering, compared to the total duration of
the test. The line containing plotly data has been highlighted as a reference along with the
percentage of idle time which is a good indicator of highly performing solutions (the longer the idle
time the highest the refreshing speed).

Scripting Rendering Painting System Idle Loading

Canvas 1.95% 0.01% 0.02% 0.24% 97.78% 0%

SVG 1.97% 0.14% 0.03% 0.56% 97.3% 0%

Plotly 18.8% 2.1% 0.1% 0.5% 78.5% 0%

TimeSeries 19.4% 1.47% 0.13% 0.32% 78.68% 0%

D3 39.37% 0.66% 0.16% 0.34% 59.47% 0%

Viser 50.2% 0.22% 0.16% 5.39% 42.9% 1.13%

ChartJS 56.7% 0.009% 0.02% 20.07% 23.2% 0%

Rechart 82.4% 4.9% 0.4% 1.4% 10.9% 0%

Figure 6: Computer setup parameters.

3 Results after implementing the Spectrum Attribute widget from scratch

As a final test we tried to implement the simplest plot widget available in Taranta, the Spectrum
widget, from scratch, with the goal of evaluating both potential improvements in performances and
the feasibility of starting a new library based on html and … instead of relying on D3.js.
Benchmark results are reported in Table 1 (row one and two to be compared with line three) and
show that this solution would be the most performant one.

The drawback is that we won’t be able to rely on stable working code and will have to implement all
the charts needed by SKA and the widget customization from scratch.

Improve the loading time for the “Resources Readiness” dashboard

The final part of the study has been devoted to reducing the loading time for a specific dashboard,
See Figure 7.
Problem statement: after pressing the “start” button in Taranta, the user has to wait about 10
seconds before the dashboard is fully loaded.
The issue was caused by a specific widget, the State widget, which was sequentially fetching the
metadata of every device linked to it. The dashboard checks the state of a relatively high number of
different devices and this triggered a long queue of calls to the FetchDeviceMetadata
function which caused the long loading time.
To improve this behaviour we relied on the ability of TangoGQL to fetch all the deployed devices at
once. The change in performance is substantial, and brought the loading time down to about 1s.

Figure 7: Resources Readiness dashboard.

Conclusions and suggestions for further improvements in Taranta
performances

This study focused on the analysis of performance bottlenecks present in Taranta that slow the
performances of the tool when a dashboard is running. We found that the graphical library has the
highest impact in slowing down performances and investigated possible solutions to improve this
area. In particular we 1) Refined the problem moving the focus from the dispatcher to the graphical
rendering of widgets; 2) analysed the plotly library and explored three possible ways of increasing
performances of graphical widgets (by directly modifying the library code, by changing the library
itself and by developing charts from scratch).
Finally, the cause of the long loading time of the “Resource Readiness” dashboard has been
debugged and the problem has been resolved resulting in a better experience for the user of the
dashboard.

The extensive benchmark study performed by the team also provided a better idea for further
improvements of Taranta code. They could be:

For the Edit part:

● The graphical library currently used, plotly, renders widgets everytime they are dragged
across the canvas. This behaviour could be optimised;

● The way in which information is stored on the database can be optimized.

For the Load part:

● Three different queries are performed while loading a dashboard. They retrieve all the
deployed devices/attributes and then filter them to display those used by the dashboard.
This mechanism could be trimmed to query only the devices/attributes used in the
dashboard from the start. Such a development would include changes in TangoGQL.

For the Refresh part:

● The library currently in use by graphical widgets is not optimised with regards to

performances. Custom solutions have been prototyped and proved to improve the rendering

speed. It has to be noticed though that adopting this solution will mean to develop from

scratch the graphical widgets needed in SKA and all the related interactions modalities (zoom

in and out, pan, etc.) and functionalities.

● Optimise queries to the back-end.

References

[SP-586] “Refactor Taranta to improve performance” https://jira.skatelescope.org/browse/SP-586
[SP-296] “Spike to benchmark performance of WebJive”,
https://jira.skatelescope.org/browse/SP-296, See the linked documentation, in particular:
https://drive.google.com/file/d/14W-oajXd8n_TpUw_S6BsmIHiKFaIHHYc/view
[CT-341] “Benchmark js workers” https://jira.skatelescope.org/browse/CT-341
[CT-398] “Identify what function(s) is(are) slowing down the widgets” ,
https://jira.skatelescope.org/browse/CT-398

[Lighthouse] Lighthouse https://developers.google.com/web/tools/lighthouse

https://jira.skatelescope.org/browse/SP-586
https://jira.skatelescope.org/browse/SP-296
https://drive.google.com/file/d/14W-oajXd8n_TpUw_S6BsmIHiKFaIHHYc/view
https://jira.skatelescope.org/browse/CT-341
https://jira.skatelescope.org/browse/CT-398
https://developers.google.com/web/tools/lighthouse

