
Page 1 of 102
 Revision: 1C

SKA1 Mid.CBF Master Control Software Design Report

SKA1 Mid.CBF Master

Control Software Design

Report
A description of Minimum Viable Product at the end

of Program Increment #7
TALON Document Number ... T1-DRE-00450

File Type: .. DRE

Revision: .. 1C

Author ... An Yu

Date .. 2020-08-20

Status .. Draft

Classification .. Unrestricted

Prepared By Name An Yu Signature

Organisation NRC Canada

Reviewed By Name Sonja Vrcić Signature

Organisation NRC Canada

Name
Signature

Organisation

Approved By Name Mike Pleasance Signature

Organisation NRC

Issued By Name Donna Morgan Signature

Organisation NRC

Document History

Page 2 of 102
 Revision: 1C

SKA1 Mid.CBF Master Control Software Design Report

Revision Date Changes/Notes Author

A 2019-08-14 Initial version. J. Jiang

B 2019-08-20 Added document numbers and issue dates to
applicable documents.

Added requirements and assumptions.

Added state diagrams for each software
component.

Made other minor changes.

J. Jiang

1 2019-09-03 Changed doc type to Design Report. Added
doc #, updated file name and title page

D. Morgan

1A 2020-04-22 Updated document to include the new layout
for fspSubarrays and fsp devices

R. Voigt

1B 2020-05-25 Updated and simplied steps in Development
Environment and Starting Guide.

Included more explaination.

Corrected some erros in the installation
process

A. Yu

1C 2020-08-21 Merged starting guide and Development
environment chapter.

Included a more comprehensive guide on
running the software, different developer
tools, and tips for developers.

Modified all the parts that are related to the
state machine, configurScan JSON file,
outputlink description changes made in PI7.

Updated command and attribute changes.

A. Yu

Page 3 of 102
 Revision: 1C

SKA1 Mid.CBF Master Control Software Design Report

Table of Contents

1 Introduction .. 15

2 Applicable and Reference Documents .. 16

2.1 Applicable Documents .. 16

2.2 Reference Documents ... 16

3 Overview and Context... 17

3.1 Function and Purpose ... 17

3.2 Environment considerations ... 17

3.3 Context .. 17

3.4 Constraints .. 18

4 Requirement Specifications .. 19

4.1 Functional requirements ... 19

4.2 Performance requirements ... 20

4.3 Interface requirements ... 20

4.4 Operational requirements .. 21

4.5 Resources requirements ... 21

4.6 Design requirements and implementation constraints .. 21

4.7 Security and privacy requirements ... 22

4.8 Portability requirements ... 22

4.9 Software quality requirements ... 22

4.10 Software reliability requirements ... 22

4.11 Software maintainability requirements .. 22

4.12 Software safety requirements .. 23

4.13 Software configuration and delivery requirements.. 23

4.14 Data definition and database requirements ... 23

4.15 Human factors related requirements ... 23

4.16 Adaptation and installation requirements .. 23

5 Assumptions .. 23

6 Software Design Overview .. 25

6.1 Software Static Architecture ... 25

Page 4 of 102
 Revision: 1C

SKA1 Mid.CBF Master Control Software Design Report

6.1.1 Mid.CBF Master .. 25

6.1.2 Mid.CBF Subarray .. 26

6.1.3 Mid.CBF VCC Capability ... 27

6.1.4 Mid.CBF FSP Capability ... 28

6.2 Software Dynamic Architecture .. 30

6.2.1 Device FQDNs .. 31

6.2.2 Operational State and Observing State .. 33

6.2.2.1 Mid.CBF Master .. 33

6.2.2.2 Mid.CBF Subarray .. 34

6.2.2.3 Mid.CBF VCC Capability ... 35

6.2.2.4 Mid.CBF FSP Capability ... 35

6.2.2.5 VCC Frequency Band and Search Window and FSP Function Mode Capabilities 36

6.2.2.6 Mid.CBF FSP Subarray Capability .. 36

6.2.3 State Transitions ... 37

6.3 Software Behaviour... 40

6.3.1 Power On, Off, and Standby.. 40

6.3.2 Assign and Release Resources .. 42

6.3.3 Scan Configuration .. 43

6.3.4 Scan Execution .. 44

6.3.5 End Scheduling Block .. 46

6.4 Error Handling ... 47

6.5 Monitor and Control ... 47

6.6 External Interfaces .. 47

6.7 Long Lifetime Software ... 48

6.8 Memory and CPU Budget.. 48

6.9 Design Standards, Conventions and Procedures .. 48

6.10 Environment.. 48

6.11 Reliability, Availability and Maintainability ... 48

7 Software Components .. 49

7.1 Mid.CBF Master .. 49

7.1.1 Type ... 49

Page 5 of 102
 Revision: 1C

SKA1 Mid.CBF Master Control Software Design Report

7.1.2 Development Type .. 49

7.1.3 Function and Purpose ... 49

7.1.4 Subordinates ... 49

7.1.5 Dependencies .. 49

7.1.6 Interfaces .. 50

7.1.6.1 Properties .. 50

7.1.6.2 Attributes .. 50

7.1.6.3 Commands .. 51

7.1.7 Resources .. 52

7.1.8 References .. 52

7.1.9 Data ... 52

7.2 Mid.CBF Subarray .. 52

7.2.1 Type ... 52

7.2.2 Development Type .. 52

7.2.3 Function and Purpose ... 52

7.2.4 Subordinates ... 53

7.2.5 Dependencies .. 53

7.2.6 Interfaces .. 53

7.2.6.1 Properties .. 53

7.2.6.2 Attributes .. 54

7.2.6.3 Commands .. 55

7.2.7 Resources .. 57

7.2.8 References .. 57

7.2.9 Data ... 57

7.3 Mid.CBF VCC Capability ... 57

7.3.1 Type ... 57

7.3.2 Development Type .. 57

7.3.3 Function and Purpose ... 58

7.3.4 Subordinates ... 58

7.3.5 Dependencies .. 58

7.3.6 Interfaces .. 58

Page 6 of 102
 Revision: 1C

SKA1 Mid.CBF Master Control Software Design Report

7.3.6.1 Properties .. 58

7.3.6.2 Attributes .. 59

7.3.6.3 Commands .. 60

7.3.7 Resources .. 61

7.3.8 References .. 62

7.3.9 Data ... 62

7.4 Mid.CBF FSP Capability ... 62

7.4.1 Type ... 62

7.4.2 Development Type .. 62

7.4.3 Function and Purpose ... 62

7.4.4 Subordinates ... 62

7.4.5 Dependencies .. 63

7.4.6 Interfaces .. 63

7.4.6.1 Properties .. 63

7.4.6.2 Attributes .. 63

7.4.6.3 Commands .. 64

7.4.7 Resources .. 65

7.4.8 References .. 65

7.4.9 Data ... 65

7.5 Mid.CBF FSP Subarray Capability .. 65

7.5.1 Type ... 65

7.5.2 Development Type .. 65

7.5.3 Function and Purpose ... 66

7.5.4 Subordinates ... 66

7.5.5 Dependencies .. 66

7.5.6 Interfaces .. 66

7.5.6.1 Properties .. 66

7.5.6.2 Attributes .. 67

7.5.6.3 Commands .. 68

7.5.6.4 Properties .. 70

7.5.6.5 Attributes .. 70

Page 7 of 102
 Revision: 1C

SKA1 Mid.CBF Master Control Software Design Report

7.5.6.6 Commands .. 71

7.5.7 Resources .. 72

7.5.8 References .. 72

7.5.9 Data ... 73

7.6 Internal Interfaces ... 73

7.7 Requirements to Design Components Traceability .. 73

8 Control and Monitor Parameters, Indicators and Messages .. 74

 ... WebJive User Interfaces
 .. 75

9 .. 75

10 User Guide and Development Environment ... 79

10.1 Setting Up Ubuntu Subsystem .. 79

10.1.1 Improving Virtual Machine Performance ... 80

10.1.2 Sharing Files Between Windows and VirtualBox Ubuntu ... 80

10.2 Software Enviroment .. 82

10.2.1 Setting up Tango Enviroment ... 82

10.2.2 Setting up Mid-CBF-MCS ... 83

10.2.3 Setting Up LMC Base Classes .. 83

LMC Base Class is also needed if you want to use Pogo. Cloning this repository is recommended. . 83

10.3 Docker Commands .. 83

10.4 Running devices .. 84

 Using JIVE .. 84

10.4.1 .. 84

You then have to manually copy and run the export command popped up in the terminal. 85

10.4.2 Running the state machine ... 85

10.4.2.1 Device Relationships ... 86

10.4.2.2 Configure scan ... 86

10.5 Development ... 87

10.5.1 Branching with Git... 87

10.5.2 Using Pogo .. 88

10.5.3 Understanding python files for Tango devices ... 88

Page 8 of 102
 Revision: 1C

SKA1 Mid.CBF Master Control Software Design Report

10.5.3.1 Init_device: .. 88

10.5.3.2 Device properties .. 88

10.5.3.3 Attribute .. 88

10.5.4 Sphinx .. 89

10.5.5 Understanding LMC Base Class 0.6.0 .. 89

10.5.5.1 Summary of changes ... 89

10.5.5.2 Creating a new Command Class: .. 89

10.6 Publishing image ... 92

10.6.1 Change version number .. 92

10.6.2 Publish the image .. 92

10.7 Updating SKA MPI ... 93

10.7.1 Configuration JSON ... 93

10.7.2 Image version .. 93

10.7.3 The test cases .. 93

10.8 Interacting with devices in Linux shell .. 94

10.9 Studying Configuration Files ... 94

10.9.1 Makefile: ... 94

10.9.2 Other Files: .. 94

10.9.2.1 Adding a new device for Mid-CBF-MCS .. 95

11 IP Libraries and Library Management ... 96

12 Software Variations and Management ... 97

13 Test Plan .. 98

13.1 Development Test Plan ... 98

13.2 Prototype Test Plan ... 98

13.3 New Product Introduction Test Plan ... 98

13.4 Full Production Test Plan .. 98

14 Appendix I: Discrepancies From Design At CSP CDR ... 99

15 Appendix II: JSON Examples .. 100

15.1 Scan Configuration .. 100

15.2 Delay Models .. 102

Page 9 of 102
 Revision: 1C

SKA1 Mid.CBF Master Control Software Design Report

Page 10 of 102
 Revision: 1C

SKA1 Mid.CBF Master Control Software Design Report

List of Figures

Figure 3-1 Breakdown of the MVP .. 18

Figure 3-2 Context diagram of Mid.CBF MCS and TALON-DX boards ... 18

Figure 6-1 Composition of Mid.CBF Master .. 26

Figure 6-2 Inheritance diagram of Mid.CBF Master ... 26

Figure 6-3 Composition of Mid.CBF Subarray ... 27

Figure 6-4 Inheritance diagram of Mid.CBF Subarray ... 27

Figure 6-5 Composition of Mid.CBF VCC Capability .. 28

Figure 6-6 Inheritance diagram of Mid.CBF VCC Capability .. 28

Figure 6-7 Composition of Mid.CBF FSP Capability ... 29

Figure 6-8 Inheritance diagram of Mid.CBF FSP Capability .. 29

Figure 6-9 Operational states implemented by Mid.CBF Master ... 33

Figure 6-10 SKA Subarray .. 34

Figure 6-12 Operational states implemented by Mid.CBF VCC Capability ... 35

Figure 6-13 Observing states implemented by Mid.CBF VCC Capability .. 35

Figure 6-14 Operational states implemented by Mid.CBF FSP Capability .. 36

Figure 6-15 Operational states implemented by Mid.CBF VCC frequency band and search window and
FSP function mode Capabilities .. 36

Figure 6-16 Observing states implemented by Mid.CBF FSP Subarray Capability 37

Figure 6-17 Message flow when powering on Mid.CBF ... 40

Figure 6-18 Message flow when putting Mid.CBF into standby ... 41

Figure 6-19 Message flow when powering off Mid.CBF ... 41

Figure 6-20 Message flow when assigning resources to a Mid.CBF Subarray .. 42

Figure 6-21 Message flow when releasing all resources from a Mid.CBF Subarray 43

Figure 6-22 Message flow when configuring a scan ... 44

Figure 6-23 Message flow when performing a scan ... 46

Figure 6-24 Message flow when ending a scheduling block ... 47

Figure 9-1 WebJive GUI landing .. 75

Figure 9-2 WebJive GUI viewing attributes ... 76

Figure 9-3 WebJive GUI sending commands .. 77

Page 11 of 102
 Revision: 1C

SKA1 Mid.CBF Master Control Software Design Report

Figure 9-4 WebJive GUI custom dashboard .. 78

Page 12 of 102
 Revision: 1C

SKA1 Mid.CBF Master Control Software Design Report

List of Tables

Table 2-1 Applicable Documents .. 16

Table 2-2 Reference Documents ... 16

Table 4-1 Functional Requirements .. 19

Table 4-2 Interface requirements ... 20

Table 4-3 Operational requirements .. 21

Table 4-4 Design requirements ... 21

Table 4-5 Software quality requirements ... 22

Table 4-6 Software reliability requirements ... 22

Table 4-7 Software maintanability requirements ... 22

Table 4-8 Software configuration and delivery requirements .. 23

Table 4-9 Data definition and database requirements ... 23

Table 5-1 Assumptions .. 23

Table 6-1 Mid.CBF MCS Device FQDNs ... 31

Table 7-1 Mid.CBF Master Properties ... 50

Table 7-2 Mid.CBF Master Attributes ... 50

Table 7-3 Mid.CBF Master Commands ... 51

Table 7-4 Mid.CBF Subarray Properties .. 53

Table 7-5 Mid.CBF Subarray Attributes .. 54

Table 7-6 Mid.CBF Subarray Commands... 55

Table 7-7 Mid.CBF VCC Capability Properties ... 59

Table 7-8 Mid.CBF VCC Capability Attributes ... 59

Table 7-9 Mid.CBF VCC Capability Commands ... 60

Table 7-10 Mid.CBF FSP Capability Properties .. 63

Table 7-11 Mid.CBF FSP Capability Attributes .. 64

Table 7-12 Mid.CBF FSP Capability Commands .. 64

Table 7-13 Mid.CBF FspCorrSubarray Capability Properties... 66

Table 7-14 Mid.CBF FspCorrSubarray Capability Attributes ... 67

Table 7-15 Mid.CBF FspCorrSubarray Capability Commands ... 68

Table 7-16 Mid.CBF FspPssSubarray Capability Properties .. 70

Page 13 of 102
 Revision: 1C

SKA1 Mid.CBF Master Control Software Design Report

Table 7-17 Mid.CBF FspPssSubarray Capability Attributes ... 71

Table 7-18 Mid.CBF FspPssSubarray Capability Commands ... 71

Page 14 of 102
 Revision: 1C

SKA1 Mid.CBF Master Control Software Design Report

Terms, Acronyms, and Abbreviations

CS Control System

CSP Central Signal Processor

CBF Correlator and Beamformer

FSP Frequency Slice Processor

FQDN Fully Qualified Domain Name

GUI Graphical User Interface

HPS Hard Processor System

ICD Interface Control Document

JSON

LMC Local Monitor and Control

LRU Line Replaceable Unit

FS Frequency Slice

FSP Frequency Slice Processor

MCS Master Control Software

Mid SKA1 Mid-Frequency Telescope

MVP Minimum Viable Product

PSS Pulsar Search

PST Pulsar Timing

SAFe Scaled Agile Framework

SDP Science Data Processor

SKA Square Kilometre Array

SKA1 SKA Phase 1

SKAO SKA Organization

TANGO Control System Framework

TMC Telescope Management and Control

VCC Very Coarse Channeliser

VLBI Very Long Baseline Interferometry

Page 15 of 102
 Revision: 1C

SKA1 Mid.CBF Master Control Software Design Report

1 Introduction

This document describes the SKA1 Mid.CBF Master Control Software (MCS) developed as part of the
Evolutionary Prototype for Program Increment #3, referred to as the Minimum Viable Product (MVP).

During the design phase, several interfaces departed from existing Interface Control Documents and
Detailed Design Documents and were further refined, as detailed in CHAPTER 14.

This work was performed within the context of the SKAO Scaled Agile Framework (SAFe) Release Train,
using Atlassian tools Confluence and JIRA for inter- and intra-team communication.

Page 16 of 102
 Revision: 1C

SKA1 Mid.CBF Master Control Software Design Report

2 Applicable and Reference Documents

2.1 Applicable Documents

The following documents at their indicated revision form part of this document to the extent

specified herein. Unless otherwise noted, the latest Revision is assumed.

Table 2-1 Applicable Documents

Ref No Document/Drawing Number Document Title Issue Number

AD1 SKA-TEL-CSP-00000066 Mid.CBF DDD 11 October 2018

AD2 SKA-TEL-CSP-0000019 ICD CSP.LMC to Mid.CBF 26 June 2018

AD3 000-000000-010 SKA CS Guidelines 5 May 2018

2.2 Reference Documents

The following documents provide useful reference information associated with this document.

These documents are to be used for information only. Changes to the date and/or revision

number do not make this document out of date.

Table 2-2 Reference Documents

Ref No
Document/Drawing

Number
Document Title Issue Number

RD1 ECSS-E-ST-40C European Cooperation for Space
Standardization, Space Engineering - Software

6 March 2009

Page 17 of 102
 Revision: 1C

SKA1 Mid.CBF Master Control Software Design Report

3 Overview and Context

3.1 Function and Purpose

The Mid.CBF MCS implements TANGO Devices that facilitate high-level control of Mid.CBF by the CSP
Local Monitor and Control (CSP.LMC), and consequently by the Telescope Management and Control
(TMC). It provides an interface that acts as an intermediate between CSP.LMC and the TALON-DX boards
that implement signal processing functionality.

3.2 Environment considerations

No particular considerations were given to the operating environment. Refer to CHAPTER 10 for

environment details.

3.3 Context

The Mid.CBF MCS was developed as part of the MVP (FIGURE 3-1). The primary goal of the MVP is to be
able to create, with a text editor, a simple scheduling block that is executed by the Observation
Execution Tool (OET), resulting in control over the following interfaces:

 TMC to DISH

 TMC to SDP

 TMC to CSP (including Mid.CBF MCS)

The scheduling block should execute a simple scan where:

 The telescopes are configured to slew to a source at a nominal RA, Dec

 The SDP is configured to accept data

 The correlator is configured to have a simple imaging mode

Page 18 of 102
 Revision: 1C

SKA1 Mid.CBF Master Control Software Design Report

Figure 3-1 Breakdown of the MVP

The CSP.LMC exposes a set of attributes and commands, allowing TMC to change its operational state,
add and release resources to a particular sub-array, configure a scan for imaging, and start, execute, and
end a scan. These commands are forwarded to Mid.CBF MCS, where appropriate actions are taken,
though nothing is actually executed on hardware.

For completeness, the context diagram of Mid.CBF MCS and TALON-DX boards is given in FIGURE 3-2. In
the future, the Mid.CBF MCS will communicate with the TALON LRU Control and TALON-DX Master
TANGO Devices.

Figure 3-2 Context diagram of Mid.CBF MCS and TALON-DX boards

3.4 Constraints

No constraints to development were identified.

OET

SDPCSP.LMCDISH

Mid.CBF MCS

TMC

CSP.LMC

Mid.CBF MCS

TALON-DX
HPS

Page 19 of 102
 Revision: 1C

SKA1 Mid.CBF Master Control Software Design Report

4 Requirement Specifications

4.1 Functional requirements

Table 4-1 Functional Requirements

ID Requirement

Mid.CBF-MCS-PI3-REQ-
001

Upon successful initialization Mid.CBF Master shall transition to
operational state STANDBY.

Mid.CBF-MCS-PI3-REQ-
002

Mid.CBF Master shall implement commands, attributes and functionality
as described in Mid.CBF DDD [AD1] and ICD Mid.CBF to CSP.LMC
AD2] required to bring Mid.CBF MCS in operational state ON.

Mid.CBF-MCS-PI3-REQ-
003

Mid.CBF Master shall implement commands, attributes and functionality
as described in Mid.CBF DDD [AD1] and ICD Mid.CBF to CSP.LMC
[AD2] required to bring Mid.CBF MCS in operational state OFF.

Mid.CBF-MCS-PI3-REQ-
004

Mid.CBF Master Control Software Release PI#3 shall instantiate a single
subarray.

Mid.CBF-MCS-PI3-REQ-
005

Mid.CBF Master Control Software Release PI#3 shall instantiate four
VCCs.

Mid.CBF-MCS-PI3-REQ-
006

Mid.CBF Master Control Software Release PI#3 shall randomly assign
receptor IDs to VCCs.

Mid.CBF-MCS-PI3-REQ-
007

Mid.CBF Master Control Software Release PI#3 shall instantiate four
FSPs.

Mid.CBF-MCS-PI3-REQ-
007

Mid.CBF Subarray shall implement command add receptors to the
subarray.

Mid.CBF-MCS-PI3-REQ-
009

Mid.CBF Subarray shall implement command remove receptors from the
subarray.

Mid.CBF-MCS-PI3-REQ-
010

Mid.CBF Subarray shall implement command configure scan for
correlation as defined in ICD Mid.CBF to CSP.LMC [AD2].

Mid.CBF-MCS-PI3-REQ-
011

Mid.CBF Subarray shall implement functionality required for transition to
observing state SCANNING. The functionality and message content is
defined in ICD Mid.CBF to CSP.LMC [AD2], amendments are defined on
SKA Confluence:

https://confluence.skatelescope.org/display/SE/TM+to+CSP+ICD

Mid.CBF-MCS-PI3-REQ-
012

Mid.CBF Subarray shall implement command start scan.

Mid.CBF-MCS-PI3-REQ-
013

Mid.CBF Subarray shall implement command end scan.

Mid.CBF-MCS-PI3-REQ-
014

Mid.CBF Subarray shall implement observing state transitions as
defined in Mid.CBF DDD [AD1].

https://confluence.skatelescope.org/display/SE/TM+to+CSP+ICD

Page 20 of 102
 Revision: 1C

SKA1 Mid.CBF Master Control Software Design Report

ID Requirement

Mid.CBF-MCS-PI3-REQ-
015

Mid.CBF MCS TANGO Device VCC shall support at least the
functionality required to support Mid.CBF transition to operational state
ON, scan configuration for correlation, scan start and scan end.

Mid.CBF-MCS-PI3-REQ-
016

Mid.CBF MCS TANGO Device FSP shall support at least the
functionality required to support Mid.CBF transition to operational state
ON, scan configuration for correlation, scan start and scan end.

Mid.CBF-MCS-PI3-REQ-
017

Mid.CBF Subarray shall implement command go to idle.

4.2 Performance requirements

Specific performance requirements for this initial version of the Mid.CBF MCS have not been

identified, therefore formal requirements related to performance of Release PI#3 have not been

specified.

The following performance is acceptable:

a) Software initialization is completed in less than 15 seconds.

b) Each command is executed in less than 5 seconds.

Note that when TALON-DX hardware is deployed, execution of commands that require re-

configuration of FPGAs may take longer to complete; this version however implements only a

subset of high-level TANGO devices and state transitions are almost instantaneous.

4.3 Interface requirements

Table 4-2 Interface requirements

ID Requirements

Mid.CBF-MCS-PI3-REQ-
030

Mid.CBF Master Control Software shall implement interface with
Telescope Monitor and Control as defined in the Interface Control
Document CSP.LMC to Mid.CBF [AD2] and amendments defined on
the SKA Confluence pages at this link:

https://confluence.skatelescope.org/display/SE/Key+Interface+descriptio
ns

Note: In PI#3 Release all commands are implemented as synchronous
commands.

Mid.CBF-MCS-PI3-REQ-
031

Mid.CBF Master Control Software shall provide GUI interface that
displays all major state and mode indicators for TANGO devices
implemented as a part of PI#3 Release.

https://confluence.skatelescope.org/display/SE/Key+Interface+descriptions
https://confluence.skatelescope.org/display/SE/Key+Interface+descriptions

Page 21 of 102
 Revision: 1C

SKA1 Mid.CBF Master Control Software Design Report

Mid.CBF software running on TALON-DX board is not ready to support communication with

the Master Control Software, therefore, implementation of the interface with the TALON-DX

Board software is not required.

4.4 Operational requirements

Table 4-3 Operational requirements

ID Requirement

Mid.CBF-MCS-PI3-REQ-041

Mid.CBF MCS shall run within containerised environment as specified
on the SKA Developer Portal.

http://developer.skatelescope.org/en/latest/

Mid.CBF-MCS-PI3-REQ-042

Mid.CBF Master and Subarray shall implement operational state and
other state and mode indicators defined in Mid.CBF Detailed Design
Document [AD1].

Mid.CBF-MCS-PI3-REQ-043

Mid.CBF TANGO Devices for which detailed list of modes and states is
not defined in Mid.CBF Detailed Design Document [AD1] shall
implement mode and state indicators as defined for Capabilities in the
document SKA Control System Guidelines [AD3].

4.5 Resources requirements

Specific requirements related to resources used by Mid.CBF MCS have not been identified, other

then the requirement that PI#3 Release of Mid.CBF MCS software can be executed on a

developer workstation and that CI tests can be executed on the server provided by the SKA

organization.

4.6 Design requirements and implementation constraints

Table 4-4 Design requirements

ID Requirement

Mid.CBF-MCS-PI3-REQ-
061

Mid.CBF MCS shall run within containerised environment as specified
on the SKA Developer Portal.

http://developer.skatelescope.org/en/latest/

Mid.CBF-MCS-PI3-REQ-
062

Mid.CBF Master and Subarray shall implement operational state and
other state and mode indicators defined in Mid.CBF Detailed Design
Document [AD1].

Mid.CBF-MCS-PI3-REQ-
063

Mid.CBF TANGO Devices for which detailed list of modes and states is
not defined in Mid.CBF Detailed Design Document [AD1] shall
implement mode and state indicators as defined for Capabilities in the
document SKA Control System Guidelines [AD3].

http://developer.skatelescope.org/en/latest/
http://developer.skatelescope.org/en/latest/

Page 22 of 102
 Revision: 1C

SKA1 Mid.CBF Master Control Software Design Report

4.7 Security and privacy requirements

PI#3 Release of Mid.CBF Master Control Software is not required to address security and privacy
concerns.

4.8 Portability requirements

Portability is achieved by Mid.CBF-MCS-PI3-REQ-061.

4.9 Software quality requirements

Mid.CBF MCS shall implement a set of tests to be executed each time the software is submitted

in the software library (on push). The CI guidelines are provided on the SKA Developer Portal.

Table 4-5 Software quality requirements

ID Requirements

Mid.CBF-MCS-PI3-REQ-090

Mid.CBF MCS shall implement a set of tests to be executed each time
the software is submitted in the software library (on push). The CI
guidelines are provided on the SKA Developer Portal.

4.10 Software reliability requirements

Table 4-6 Software reliability requirements

ID Requirements

Mid.CBF-MCS-PI3-REQ-100 Mid.CBF Master Control Software shall catch and re-throw all
exceptions.

4.11 Software maintainability requirements

Table 4-7 Software maintanability requirements

ID Requirements

Mid.CBF-MCS-PI3-REQ-110 Mid.CBF Master Control Software source code shall be well
documented.

Page 23 of 102
 Revision: 1C

SKA1 Mid.CBF Master Control Software Design Report

4.12 Software safety requirements

Software safety requirements have not been identified.

4.13 Software configuration and delivery requirements

Table 4-8 Software configuration and delivery requirements

ID Requirements

Mid.CBF-MCS-PI3-REQ-
130

Mid.CBF MCS source code shall be available as a project in the SKA
GitHub.

Mid.CBF-MCS-PI3-REQ-
131

Containerised image of the Mid.CBF MCS software shall be available on
the Nexus Server, as specified on the SKA Developer Portal.

http://developer.skatelescope.org/en/latest/

4.14 Data definition and database requirements

Table 4-9 Data definition and database requirements

ID Requirements

Mid.CBF-MCS-PI3-REQ-
140

Mid.CBF MCS shall provide the TANGO Database where all Mid.CBF
TANGO devices register during initialization.

4.15 Human factors related requirements

Requirements related to human factors have not been identified.

4.16 Adaptation and installation requirements

No specific adaptation and installation requirements have been identified.

5 Assumptions

Table 5-1 Assumptions

ID Category Assumption Retirement Date

1 Design Constraint On a scan configuration with invalid
parameters, Mid.CBF Subarray shall
transition to observing state IDLE if its
observing state was previously IDLE or
READY if its observing state was previously
READY.

End of PI#4

http://developer.skatelescope.org/en/latest/

Page 24 of 102
 Revision: 1C

SKA1 Mid.CBF Master Control Software Design Report

2 Design Constraint Mid.CBF Subarray shall remain in observing
state CONFIGURING until destination
addresses have been provided for all
configured fine channels. Additionally, if an
invalid JSON object is received, Mid.CBF
Subarray shall remain in observing state
CONFIGURING.

End of PI#4

Page 25 of 102
 Revision: 1C

SKA1 Mid.CBF Master Control Software Design Report

6 Software Design Overview

This chapter describes the design of the Mid.CBF MCS from static, dynamic, and behavioural

points of view.

6.1 Software Static Architecture

The Mid.CBF MCS for the MVP is comprised of the following components:

 Mid.CBF Master

 2 Mid.CBF Subarray

 4 Mid.CBF VCC Capabilities

 4 Mid.CBF FSP Capabilities

Each of these components is implemented by one or more of these TANGO Device Classes:

 CbfMaster, based on the SKAMaster class

 CbfSubarray, based on the SKASubarray class

 SearchWindow, based on the SKACapability class

 Vcc, based on the SKACapability class

 VccBand1And2, VccBand3, VccBand4, and VccBand5, all based on the SKACapability class

 VccSearchWindow, based on the SKACapability class

 Fsp, based on the SKACapability class

 FspCorr, FspPss, FspPst, FspVlbi, all based on the SKACapability class

 FspCorrSubarray, based on the SKASubarray class

 FspPssSubarray, based on the SKASubarray class

6.1.1 Mid.CBF Master

Mid.CBF Master functionality is implemented by a single instance of CbfMaster (FIGURE 6-1),

the inheritance diagram of which is given in FIGURE 6-2.

Page 26 of 102
 Revision: 1C

SKA1 Mid.CBF Master Control Software Design Report

Mid.CBF Master

CbfMaster

Figure 6-1 Composition of Mid.CBF Master

Figure 6-2 Inheritance diagram of Mid.CBF Master

6.1.2 Mid.CBF Subarray

Mid.CBF Subarray functionality is implemented by a single instance of CbfSubarray and two

instances of SearchWindow (FIGURE 6-3). The inheritance diagram of these classes have been

combined and is given in FIGURE 6-4.

SKABaseDevice

SKAMaster

CbfMaster

Device

Page 27 of 102
 Revision: 1C

SKA1 Mid.CBF Master Control Software Design Report

Mid.CBF Subarray

CbfSubarray

SearchWindow

SearchWindow

Figure 6-3 Composition of Mid.CBF Subarray

Figure 6-4 Inheritance diagram of Mid.CBF Subarray

6.1.3 Mid.CBF VCC Capability

Mid.CBF VCC Capability functionality is implemented by a single instance of Vcc, a single

instance each of VccBand1And2, VccBand3, VccBand4, and VccBand5, and two instances of

VccSearchWindow (FIGURE 6-5). The inheritance diagram of these classes have been combined

and is given in FIGURE 6-6.

The TANGO Devices which implement the VCC’s frequency band capabilities are instantiated

during initialization. As described in SECTION 7.3.6.3, the VCC is configured to process input

data for one frequency band at any given time. The active frequency band capability reports its

operational state as ON, while all others report DISABLE.

SKABaseDevice

SKAObsDevice

SKASubarray

Device

CbfSubarray

SKACapability

SearchWindow

Page 28 of 102
 Revision: 1C

SKA1 Mid.CBF Master Control Software Design Report

VCC

Vcc

VccSearchWindow

VccSearchWindow

VccBand1And2

VccBand3

VccBand4

VccBand5

Figure 6-5 Composition of Mid.CBF VCC Capability

Figure 6-6 Inheritance diagram of Mid.CBF VCC Capability

6.1.4 Mid.CBF FSP Capability

Mid.CBF FSP Capability functionality is implemented by a single instance of Fsp, a single

instance each of FspCorr, FspPss, FspPst, and FspVlbi, and a number of instances of

FspCorrSubarray, FspPssSubarray, FspVlbiSubarray, and fspPstSubarray corresponding to

SKABaseDevice

SKAObsDevice

Device

SKACapability

Vcc VccSearchWindowVccBand1And2

VccBand3

VccBand4

VccBand5

Page 29 of 102
 Revision: 1C

SKA1 Mid.CBF Master Control Software Design Report

the number of Mid.CBF Subarrays (a single one for the MVP, future releases will instantiate up

to 16 sub-arrays as required) (FIGURE 6-7). The inheritance diagram of these classes have been

combined and is given in FIGURE 6-8.

The TANGO Devices which implement the FSP’s function mode capabilities are instantiated

during initialization. As described in SECTION 7.4.6.3, the FSP is configured to perform at most

one function at any given time. The active function mode capability reports its operational state

as ON, while all others report DISABLE.

FSP

Fsp FspSubarray

FspCorr

FspPss

FspPst

FspVlbi

Figure 6-7 Composition of Mid.CBF FSP Capability

Figure 6-8 Inheritance diagram of Mid.CBF FSP Capability

Page 30 of 102
 Revision: 1C

SKA1 Mid.CBF Master Control Software Design Report

Figure 6-9 Inheritance diagram of Fsp’s

6.2 Software Dynamic Architecture

The Mid.CBF MCS runs in a containerised environment (refer to CHAPTER 10 for more details).

Each component runs in a separate TANGO Device Server inside its own container. In

particular, the device servers implemented are:

 CbfMaster, for Mid.CBF Master, which runs the devices in FIGURE 6-1

 CbfSubarrayMulti, for the single instance of Mid.CBF Subarray, each of which runs the devices
in FIGURE 6-3

 VccMulti, for the four instances of Mid.CBF VCC Capabilities, each of which runs the devices in
FIGURE 6-5

Page 31 of 102
 Revision: 1C

SKA1 Mid.CBF Master Control Software Design Report

 FspMulti, for the four instances of Mid.CBF FSP Capabilities, each of which runs the devices in
FIGURE 6-7

Any Multi suffix indicates that the device server runs multiple device classes.

When the system is first started, the TANGO Devices are registered in a TANGO Database. For

the MVP, integration and demo are done on the TMC side. Hence, all CSP devices (including the

Mid.CBF devices listed in TABLE 6-1) register in the TMC TANGO DB. In the future, the CSP

and Mid.CBF devices will register in a separate database. For development, the Mid.CBF

devices will register locally in the MariaDB/MySQL database on the developer’s machine.

6.2.1 Device FQDNs

The FQDNs of the components and sub-components of the Mid.CBF MCS are listed in TABLE

6-1.

Table 6-1 Mid.CBF MCS Device FQDNs

Device Class FQDNs

CbfMaster mid_csp_cbf/sub_elt/master
CbfSubarray mid_csp_cbf/sub_elt/subarray_01
SearchWindow mid_csp_cbf/sw1/subarray_01

mid_csp_cbf/sw2/subarray_01

Vcc mid_csp_cbf/vcc/001
mid_csp_cbf/vcc/002
mid_csp_cbf/vcc/003
mid_csp_cbf/vcc/004

VccBand1And2 mid_csp_cbf/vcc_band12/001
mid_csp_cbf/vcc_band12/002
mid_csp_cbf/vcc_band12/003
mid_csp_cbf/vcc_band12/004

VccBand3 mid_csp_cbf/vcc_band3/001
mid_csp_cbf/vcc_band3/002
mid_csp_cbf/vcc_band3/003
mid_csp_cbf/vcc_band3/004

VccBand4 mid_csp_cbf/vcc_band4/001
mid_csp_cbf/vcc_band4/002
mid_csp_cbf/vcc_band4/003
mid_csp_cbf/vcc_band4/004

VccBand5 mid_csp_cbf/vcc_band5/001
mid_csp_cbf/vcc_band5/002
mid_csp_cbf/vcc_band5/003
mid_csp_cbf/vcc_band5/004

Page 32 of 102
 Revision: 1C

SKA1 Mid.CBF Master Control Software Design Report

Device Class FQDNs

VccSearchWindow mid_csp_cbf/vcc_sw1/001
mid_csp_cbf/vcc_sw2/001
mid_csp_cbf/vcc_sw1/002
mid_csp_cbf/vcc_sw2/002
mid_csp_cbf/vcc_sw1/003
mid_csp_cbf/vcc_sw2/003
mid_csp_cbf/vcc_sw1/004
mid_csp_cbf/vcc_sw2/004

Fsp mid_csp_cbf/fsp/01
mid_csp_cbf/fsp/02
mid_csp_cbf/fsp/03
mid_csp_cbf/fsp/04

FspCorr mid_csp_cbf/fsp_corr/01
mid_csp_cbf/fsp_corr/02
mid_csp_cbf/fsp_corr/03
mid_csp_cbf/fsp_corr/04

FspPss mid_csp_cbf/fsp_pss/01
mid_csp_cbf/fsp_pss/02
mid_csp_cbf/fsp_pss/03
mid_csp_cbf/fsp_pss/04

FspPst mid_csp_cbf/fsp_pst/01
mid_csp_cbf/fsp_pst/02
mid_csp_cbf/fsp_pst/03
mid_csp_cbf/fsp_pst/04

FspVlbi mid_csp_cbf/fsp_vlbi/01
mid_csp_cbf/fsp_vlbi/02
mid_csp_cbf/fsp_vlbi/03
mid_csp_cbf/fsp_vlbi/04

CbfSubarrayCorrConfig mid_csp_cbf/corrConfig/01
mid_csp_cbf/corrConfig/02

CbfSubarrayPssConfig mid_csp_cbf/pssConfig/01
mid_csp_cbf/pssConfig/02

CbfSubarrayPstConfig mid_csp_cbf/pstConfig/01
mid_csp_cbf/pstConfig/02

CbfSubarrayVlbiConfig mid_csp_cbf/vlbiConfig/01
mid_csp_cbf/vlbiConfig/02

Page 33 of 102
 Revision: 1C

SKA1 Mid.CBF Master Control Software Design Report

Device Class FQDNs

FspCorrSubarray mid_csp_cbf/fspCorrSubarray/01_01
mid_csp_cbf/fspCorrSubarray/02_01
mid_csp_cbf/fspCorrSubarray/03_01
mid_csp_cbf/fspCorrSubarray/04_01

FspPssSubarray mid_csp_cbf/fspPssSubarray/01_01
mid_csp_cbf/fspPssSubarray/02_01
mid_csp_cbf/fspPssSubarray/03_01
mid_csp_cbf/fspPssSubarray/04_01

FspPstSubarray mid_csp_cbf/fspPstSubarray/01_01
mid_csp_cbf/fspPstSubarray/02_01
mid_csp_cbf/fspPstSubarray/03_01
mid_csp_cbf/fspPstSubarray/04_01

FspVlbiSubarray mid_csp_cbf/fspVlbiSubarray/01_01
mid_csp_cbf/fspVlbiSubarray/02_01
mid_csp_cbf/fspVlbiSubarray/03_01
mid_csp_cbf/fspVlbiSubarray/04_01

6.2.2 Operational State and Observing State

The Mid.CBF MCS implements a set of operational states and observing states, reported as

state and obsState, respectively, by relevant devices.

6.2.2.1 Mid.CBF Master

Mid.CBF Master implements the set of operational states given in FIGURE 6-9. It does not

implement a set of observing states.

Figure 6-9 Operational states implemented by Mid.CBF Master

STANDBY

ON

OFF

Command
On Command

Standby

INIT

Initialized

Command
Off

Page 34 of 102
 Revision: 1C

SKA1 Mid.CBF Master Control Software Design Report

6.2.2.2 Mid.CBF Subarray

Mid.CBF Subarray state machine is revised according to ADR-8 in August 2020. Figure 6-10

describes the state machine for the base class “SKA Subarray”. However, Mid.CBF subarray has

several commands that has different names and input types.

Figure 6-10 SKA Subarray State Machine Diagram

FIGURE 6-10 describes the SKA Subarray state machine. The upper part of the diagram describes

the operational state. The lower part, contained in the box, describes the observing state.

The differences between SKA Subarray and Cbf Subarray commands are listed in TABLE 6-2

Table 6-2 different command name in Cbf Subarray

SKA Subarray Cbf Subarray

End GoToIdle

Configure ConfigureScan

AssignRecources AddReceptors

ReleaseRecources RemoveReceptors() / RemoveAllReceptors()

Page 35 of 102
 Revision: 1C

SKA1 Mid.CBF Master Control Software Design Report

6.2.2.3 Mid.CBF VCC Capability

Mid.CBF VCC Capability implements the set of operational states given in FIGURE 6-11 and the

set of observing states given in FIGURE 6-12.

OFF

ON

Command
On Command

Off

INIT

Initialized

Figure 6-11 Operational states implemented by Mid.CBF VCC Capability

IDLE

CONFIGURING

READY

SCANNING

Command
ConfigureScan

Ready Command
ConfigureScan

Command
Scan Command

EndScan

Command
GoToIdle

Figure 6-12 Observing states implemented by Mid.CBF VCC Capability

6.2.2.4 Mid.CBF FSP Capability

Mid.CBF FSP Capability implements the set of operational states given in FIGURE 6-13. It does

not implement a set of observing states.

Page 36 of 102
 Revision: 1C

SKA1 Mid.CBF Master Control Software Design Report

OFF

ON

Command
On Command

Off

INIT

Initialized

Figure 6-13 Operational states implemented by Mid.CBF FSP Capability

6.2.2.5 VCC Frequency Band and Search Window and FSP Function Mode Capabilities

The Mid.CBF VCC frequency band and search window and FSP function mode Capabilities all

implement the set of operational states given in FIGURE 6-14. They do not implement a set of

observing states.

OFF

DISABLE

Command
On Command

Off

INIT

Initialized

ON

Unselected
Selected

Figure 6-14 Operational states implemented by Mid.CBF VCC frequency band and search

window and FSP function mode Capabilities

6.2.2.6 Mid.CBF FSP Subarray Capability

Page 37 of 102
 Revision: 1C

SKA1 Mid.CBF Master Control Software Design Report

Mid.CBF FSP Subarray Capability implements the set of observing states given in FIGURE 6-15.

Its operational state takes on the operational state of the FSP it belongs to.

IDLE

CONFIGURING

READY

SCANNING

Command
ConfigureScan

Ready Command
ConfigureScan

Command
Scan Command

EndScan

Command
GoToIdle

Figure 6-15 Observing states implemented by Mid.CBF FSP Subarray Capability

6.2.3 State Transitions

TABLE 6- provides an outline of a typical workflow that Mid.CBF may execute, along with the

resulting state transitions for the devices implemented for the MVP (a single Mid.CBF Subarray,

4 VCCs, and 4 FSPs). A set of states is preceded by a trigger (darker grey background), and the

important transitions thereafter are bolded.

Table 6-3 Mid.CBF MCS state transitions

The Mid.CBF first receives power. All devices enter an initializing state.

Mid.CBF
state

Mid.CBF
Subarray state

Mid.CBF Subarray
obsState

VCC
state

VCC obsState FSP
state

FSP Subarray
obsState

INIT INIT EMPTY INIT IDLE INIT IDLE
INIT IDLE INIT IDLE
INIT IDLE INIT IDLE
INIT IDLE INIT IDLE

The Mid.CBF is finished initializing and enters a low-power standby state. The Mid.CBF Subarrays are
disabled, and the VCC and FSP Capabilities are powered off.

Mid.CBF
state

Mid.CBF
Subarray state

Mid.CBF Subarray
obsState

VCC
state

VCC obsState FSP
state

FSP Subarray
obsState

STANDBY OFF EMPTY OFF IDLE OFF IDLE

Page 38 of 102
 Revision: 1C

SKA1 Mid.CBF Master Control Software Design Report

OFF IDLE OFF IDLE
OFF IDLE OFF IDLE
OFF IDLE OFF IDLE

The command to power on is sent to Mid.CBF. The Mid.CBF Subarrays are powered on, and the VCC
and FSP Capabilities are powered on.

Mid.CBF
state

Mid.CBF
Subarray state

Mid.CBF Subarray
obsState

VCC
state

VCC obsState FSP
state

FSP Subarray
obsState

ON ON EMPTY ON IDLE ON IDLE
ON IDLE ON IDLE
ON IDLE ON IDLE
ON IDLE ON IDLE

Receptors are added to the Mid.CBF Subarray, which subsequently enters the IDLE obsState

Mid.CBF
state

Mid.CBF
Subarray state

Mid.CBF Subarray
obsState

VCC
state

VCC obsState FSP
state

FSP Subarray
obsState

ON ON IDLE ON IDLE ON IDLE
ON IDLE ON IDLE
ON IDLE ON IDLE
ON IDLE ON IDLE

The command to configure a scan is sent to the Mid.CBF Subarray, which subsequently enters
observing state CONFIGURING. Additionally, all the FSP Subarrays(not FSP, but FSP Subarray)
added to the scan and all the VCCs added in the previous step enter observing state CONFIGURING.
In this example, 4 VCCs (in the previous step) and 2 FSPs were added.

Mid.CBF
state

Mid.CBF
Subarray state

Mid.CBF Subarray
obsState

VCC
state

VCC obsState FSP
state

FSP Subarray
obsState

ON ON CONFIGURING ON CONFIGURING ON CONFIGURING
ON CONFIGURING ON CONFIGURING
ON CONFIGURING ON IDLE
ON CONFIGURING ON IDLE

The Mid.CBF Subarray is finished configuring the scan. All configured observing devices enter
observing state READY.

Mid.CBF
state

Mid.CBF
Subarray state

Mid.CBF Subarray
obsState

VCC
state

VCC obsState FSP
state

FSP Subarray
obsState

ON ON READY ON READY ON READY
ON READY ON READY
ON READY ON IDLE
ON READY ON IDLE

The command to start the scan(“Scan”) is sent to the Mid.CBF Subarray. All configured observing
devices enter observing state SCANNING.

Mid.CBF
state

Mid.CBF
Subarray state

Mid.CBF Subarray
obsState

VCC
state

VCC obsState FSP
state

FSP Subarray
obsState

ON ON SCANNING ON SCANNING ON SCANNING
ON SCANNING ON SCANNING
ON SCANNING ON IDLE
ON SCANNING ON IDLE

Page 39 of 102
 Revision: 1C

SKA1 Mid.CBF Master Control Software Design Report

The command to end the scan(“EndScan”) is sent to the Mid.CBF Subarray. All configured observing
devices enter observing state READY.

Mid.CBF
state

Mid.CBF
Subarray state

Mid.CBF Subarray
obsState

VCC
state

VCC obsState FSP
state

FSP Subarray
obsState

ON ON READY ON READY ON READY
ON READY ON READY
ON READY ON IDLE
ON READY ON IDLE

The command “GoToIdle” is sent to the Mid.CBF Subarray, which subsequently enters observing state
IDLE. All configured VCCs and FSP Subarrays enter observing state IDLE. The FSPs are released
from the sub-array, but the VCCs are remain affiliated.

Mid.CBF
state

Mid.CBF
Subarray state

Mid.CBF Subarray
obsState

VCC
state

VCC obsState FSP
state

FSP Subarray
obsState

ON ON IDLE ON IDLE ON IDLE
ON IDLE ON IDLE
ON IDLE ON IDLE
ON IDLE ON IDLE

All receptors are removed from the Mid.CBF Subarray, which subsequently turns observing state to
EMPTY

Mid.CBF
state

Mid.CBF
Subarray state

Mid.CBF Subarray
obsState

VCC
state

VCC obsState FSP
state

FSP Subarray
obsState

ON ON EMPTY ON IDLE ON IDLE
ON IDLE ON IDLE
ON IDLE ON IDLE
ON IDLE ON IDLE

The command to enter the low-power standby state is sent to Mid.CBF. The Mid.CBF Subarrays are
disabled, and the VCC and FSP Capabilities are powered off. (to trigger this in JIVE, send STANBY
command to CBF Master)

Mid.CBF
state

Mid.CBF
Subarray state

Mid.CBF Subarray
obsState

VCC
state

VCC obsState FSP
state

FSP Subarray
obsState

STANDBY OFF IDLE OFF IDLE OFF IDLE
OFF IDLE OFF IDLE
OFF IDLE OFF IDLE
OFF IDLE OFF IDLE

The command to power off is sent to Mid.CBF. (Send OFF command to CBF Master)

Mid.CBF
state

Mid.CBF
Subarray state

Mid.CBF Subarray
obsState

VCC
state

VCC obsState FSP
state

FSP Subarray
obsState

OFF OFF IDLE OFF IDLE OFF IDLE
OFF IDLE OFF IDLE
OFF IDLE OFF IDLE
OFF IDLE OFF IDLE

Page 40 of 102
 Revision: 1C

SKA1 Mid.CBF Master Control Software Design Report

6.3 Software Behaviour

6.3.1 Power On, Off, and Standby

On startup, after initialization, Mid.CBF transitions to a low-power STANDBY state, drawing

<5% of nominal power. Consequently, all Mid.CBF Subarrays are in DISABLE state, and all

VCC and FSP Capabilities are OFF. All relevant observing states are IDLE.

The following sequence of messages, shown in FIGURE 6-16, occurs when powering on

Mid.CBF, which is only allowed when Mid.CBF is in STANDBY state:

1. TMC CSP Master Leaf Node command On is issued.

2. TMC CSP Master Leaf Node invokes CSP Master command On.

3. CSP Master subsequently invokes Mid.CBF Master command On.

4. Mid.CBF Master subsequently invokes the On command of all Mid.CBF Subarrays (transitioning
them to OFF state) and VCC and FSP Capabilities (transitioning them to ON state). Once the
hardware is deployed, Mid.CBF Master will turn on the VCCs and FSPs gradually, to keep inrush
current within required limits. This release does not implement this functionality.

5. Mid.CBF Master transitions to ON state.

6. CSP Master subsequently transitions to ON state.

Figure 6-16 Message flow when powering on Mid.CBF

The sequence of messages, shown in FIGURE 6-17, that occurs when the Mid.CBF is put into

STANDBY state, which is only allowed when Mid.CBF is in ON state, is similar and as follows:

1. TMC CSP Master Leaf Node command Standby is issued.

2. TMC CSP Master Leaf Node invokes CSP Master command Standby.

3. CSP Master subsequently invokes Mid.CBF Master command Standby.

4. Mid.CBF Master subsequently invokes the Off command of all Mid.CBF Subarrays (transitioning
them to DISABLE state) and VCC and FSP Capabilities (transitioning them to OFF state).

TMC CSP Master
Mid.CBF
Master

Mid.CBF
Subarray

VCC/FSP

Command On Command On Command On

Command On

state=OFF

state=ONstate=ON state=ON

Page 41 of 102
 Revision: 1C

SKA1 Mid.CBF Master Control Software Design Report

5. Mid.CBF Master transitions to STANDBY state.

6. CSP Master subsequently transitions to STANDBY state.

Figure 6-17 Message flow when putting Mid.CBF into standby

The following sequence of messages, shown in FIGURE 6-18, occurs when powering off

Mid.CBF, which is only allowed when Mid.CBF is already in STANDBY state:

1. TMC CSP Master Leaf Node command Off is issued.

2. TMC CSP Master Leaf Node invokes CSP Master command Off.

3. CSP Master subsequently invokes Mid.CBF Master command Off.

4. Mid.CBF Master invokes the Off command of all Mid.CBF Subarrays (transitioning them to
DISABLE state) and VCC and FSP Capabilities (transitioning them to OFF state). Even though this
command is allowed only in STANDBY state, when the VCCs and FSPs are already OFF, Mid.CBF
Master still forwards the Off command. The complete implementation may include powering
off the network switches, power supplies, and other equipment.

5. Mid.CBF Master transitions to OFF state.

6. CSP Master subsequently transitions to OFF state.

Figure 6-18 Message flow when powering off Mid.CBF

TMC CSP Master
Mid.CBF
Master

Mid.CBF
Subarray

VCC/FSP

Command Standby Command Standby Command Off

Command Off

state=DISABLE

state=OFFstate=STANDBY state=STANDBY

TMC CSP Master
Mid.CBF
Master

Mid.CBF
Subarray

VCC/FSP

Command Off Command Off Command Off

Command Off

state=DISABLE

state=OFFstate=OFF state=OFF

Page 42 of 102
 Revision: 1C

SKA1 Mid.CBF Master Control Software Design Report

6.3.2 Assign and Release Resources

Receptors are assigned and released to and from a particular Mid.CBF Subarray in advance of

scan configuration, and is only allowed in observing state IDLE. The sequences of messages,

shown in FIGURE 6-19, is as follows:

1. The TMC CSP Subarray Leaf Node command AssignResources is issued with a list of resources
to assign to the Mid.CBF Subarray, which is mapped to receptors.

2. The TMC CSP Subarray Leaf Node invokes the CSP Subarray command AddReceptors.

3. The CSP Subarray subsequently invokes the Mid.CBF Subarray command AddReceptors.

4. The Mid.CBF Subarray changes the sub-array affiliation of each assigned receptor’s
corresponding VCC, assigning it to itself and preventing it from being assigned to another sub-
array (this command fails if the corresponding VCC of a receptor being assigned is already
affiliated with a different sub-array). Additionally, the Mid.CBF Subarray subscribes to receive
change event notifications for each assigned VCC’s state and healthState attributes.

5. The Mid.CBF Subarray transitions to ON state.

6. The CSP Subarray subsequently transitions to ON state.

Figure 6-19 Message flow when assigning resources to a Mid.CBF Subarray

Resources are released from a particular Mid.CBF Subarray in a similar fashion. For the MVP, it

is not possible for the TMC to selectively release resources assigned to Mid.CBF (it is only

possible to release all assigned resources at once). The sequences of messages, shown in FIGURE

6-20, is as follows:

1. The TMC CSP Subarray Leaf Node command RemoveAllResources is issued.

2. The TMC CSP Subarray Leaf Node invokes the CSP Subarray command RemoveAllReceptors.

3. The CSP Subarray subsequently invokes the Mid.CBF Subarray command RemoveAllReceptors.

4. The Mid.CBF Subarray resets the sub-array affiliation of each released receptor’s corresponding
Vcc and unsubscribes from any event notifications.

5. The Mid.CBF Subarray transitions to OFF state.

TMC CSP Subarray
Mid.CBF
Subarray

VCC

Command
AddReceptors

state=ON

Command
AddReceptors

Change affiliation

Subscribe to
state/healthState

state=ON

Page 43 of 102
 Revision: 1C

SKA1 Mid.CBF Master Control Software Design Report

6. The CSP Subarray subsequently transitions to OFF state.

Figure 6-20 Message flow when releasing all resources from a Mid.CBF Subarray

6.3.3 Scan Configuration

In order to configure a scan, a Mid.CBF Subarray must be in the ON state. Consequently, at least

one receptor must be assigned to the Mid.CBF Subarray.

The scan configuration parameters are passed in the form of a string containing a serialized

JSON object. The sequences of messages, shown in FIGURE 6-21, is as follows:

1. The TMC CSP Subarray Leaf Node command ConfigureScan is issued with the scan
configuration parameters.

2. The TMC CSP Subarray Leaf Node invokes the CSP Subarray command ConfigureScan.

3. The CSP Subarray subsequently invokes the Mid.CBF Subarray command ConfigureScan.

4. The Mid.CBF Subarray transitions to observing state CONFIGURING.

5. The CSP Subarray subsequently transitions to observing state CONFIGURING.

6. The Mid.CBF Subarray configures its affiliated VCCs by setting relevant attributes, including their
observed frequency band, and configuring search windows if specified in the scan configuration.
The VCCs then transition to observing state READY.

7. The Mid.CBF Subarray configures FSPs, including setting their function mode, destination
addresses, output links, and subscribes to receive change event notifications for their state and
healthState attributes. The FSP is now affiliated with the Mid.CBF Subarray (in addition to any
affiliations it may have previously had).

8. CbfSubarrayConfig classes store the most recent scan configuration and then send the config to
the respective fspCorrSubarry, fspPssSubarray, fspVlbiSubarray, or fspPstSubarray depending on
the function mode of the scan.

9. When the FSP Subarrays receive the destination addresses for all fine channels, they transition
to observing state READY. Subsequently, the Mid.CBF Subarray transitions to observing state
READY.

TMC CSP Subarray
Mid.CBF
Subarray

VCC

Command
RemoveAllReceptors

state=OFF

Command
RemoveAllReceptors

Reset affiliation

Unsubscribe from
state/healthState

state=OFF

Page 44 of 102
 Revision: 1C

SKA1 Mid.CBF Master Control Software Design Report

10. The CSP Subarray subsequently transitions to observing state READY.

11. The TMC possibly publishes delay models, which is received by the Mid.CBF Subarray and
forwarded to its affiliated VCCs.

Figure 6-21 Message flow when configuring a scan

6.3.4 Scan Execution

A scan can only be started when the Mid.CBF Subarray is in observing state READY.

Consequently, the Mid.CBF Subarray must have received the SDP destination addresses.

However, it is not necessary for the delay models to be updated before starting a scan.

The following sequence of messages, shown in FIGURE 6-22, occurs when performing a scan:

1. The TMC CSP Subarray Leaf Node command StartScan is issued.

2. The TMC CSP Subarray Leaf Node invokes the CSP Subarray command Scan.

3. The CSP Subarray subsequently invokes the Mid.CBF Subarray command Scan.

Page 45 of 102
 Revision: 1C

SKA1 Mid.CBF Master Control Software Design Report

4. The Mid.CBF Subarray subsequently invokes the Scan command of its affiliated VCCs and FSP
Subarrays, transitioning them to observing state SCANNING.

5. The Mid.CBF Subarray transitions to observing state SCANNING.

6. The CSP Subarray subsequently transitions to observing state SCANNING.

7. The TMC publishes delay model updates, which is received by the Mid.CBF Subarray and
forwarded to its affiliated VCCs.

8. The TMC CSP Subarray Leaf Node command EndScan is issued.

9. The TMC CSP Subarray Leaf Node invokes the CSP Subarray command EndScan.

10. The CSP Subarray subsequently invokes the Mid.CBF Subarray command EndScan.

11. The Mid.CBF Subarray subsequently invokes the EndScan command of its affiliated VCCs and
FSPs, transitioning them to observing state READY.

12. The Mid.CBF Subarray transitions to observing state READY.

13. The CSP Subarray subsequently transitions to observing state READY.

Delay models should be published before the Mid.CBF Subarray transitions to observing state

SCANNING, and should be periodically updated during scan execution. If the delay models are

not received before Mid.CBF transitions to SCANNING, Mid.CBF will start generating output

products but will flag the products as invalid. Similarly, if a delay model of one or more

receptors expires during scan execution, Mid.CBF will continue to generate output products, but

will flag them as invalid. As soon as the delay models are updated, Mid.CBF will resume normal

operation and the products will be marked valid. (Since output products are not generated for the

MVP, none of this functionality has been implemented yet.)

Page 46 of 102
 Revision: 1C

SKA1 Mid.CBF Master Control Software Design Report

Figure 6-22 Message flow when performing a scan

6.3.5 End Scheduling Block2

When a scan has been configured, it may be deconfigured and the resources (excluding any

VCCs) released by ending the scheduling block. However, the scheduling block may not be

ended during a scan – that is, when the Mid.CBF Subarray is in observing state SCANNING.

The following sequence of messages, shown in FIGURE 6-23, occurs when performing a scan:

1. The TMC CSP Subarray Leaf Node command EndSB is issued.

2. The TMC CSP Subarray Leaf Node invokes the CSP Subarray command EndSB.

3. The CSP Subarray subsequently invokes the Mid.CBF Subarray command EndSB.

4. The Mid.CBF Subarray unsubscribes from any events whose subscription points were given
during scan configuration, including updates to the delay model provided by the TMC and
destination addresses provided by the SDP.

5. The Mid.CBF Subarray unsubscribes from any FSP state and healthState event notifications.

6. The Mid.CBF Subarray invokes the GoToIdle command of its affiliated VCCs and FSPs (after
which the FSPs are no longer affiliated).

7. The Mid.CBF Subarray transitions to observing state IDLE.

8. The CSP Subarray subsequently transitions to observing state IDLE.

2 This command is called “EndSB” at the moment, but will be changed to “GoToIdle”. Mid.CBF Subarray should not
be aware of scheduling blocks.

TMC CSP Subarray
Mid.CBF
Subarray

VCC

Command Scan Command Scan Command Scan

FSP

Command Scan

obsState=SCANNING

obsState=SCANNING

obsState=SCANNINGobsState=SCANNING

Update delay model Forward delay model

Command EndScan Command EndScan Command EndScan

Command EndScan

obsState=READY

obsState=READY

obsState=READYobsState=READY

Page 47 of 102
 Revision: 1C

SKA1 Mid.CBF Master Control Software Design Report

Figure 6-23 Message flow when ending a scheduling block

6.4 Error Handling

In general, during command execution on Mid.CBF Master or a Mid.CBF Subarray, any

exceptions thrown by a VCC or FSP Capability will be caught, logged, and re-thrown. The only

exceptions to this rule are the state change commands On, Off and Standby, where the propagated

command will fail silently.

Additionally, all dynamic event subscriptions will raise an exception if the subscription fails.

6.5 Monitor and Control

This section is not applicable to the Mid.CBF MCS; the purpose of the MCS itself is to monitor

and control the TALON-DX boards that implement signal processing functionality.

6.6 External Interfaces

Mid.CBF Master and Mid.CBF Subarray gives provision for CSP.LMC (or any other TANGO

Device) to access attributes and send commands. These are detailed in SECTION 7.1 (Mid.CBF

Master) and SECTION 7.2 (Mid.CBF Subarray).

Though not implemented for the MVP, the Mid.CBF MCS will eventually interface with

TALON-DX HPS devices.

Context diagrams are given in SECTION 3.3.

TMC CSP Subarray
Mid.CBF
Subarray

VCC

Command EndSB Command EndSB

FSP SDP Subarray

obsState=IDLEobsState=IDLE

Unsubscribe from
delay models

Command GoToIdle

Command GoToIdle

Unsubscribe from
state/healthState

Unsubscribe from
addresses

Page 48 of 102
 Revision: 1C

SKA1 Mid.CBF Master Control Software Design Report

6.7 Long Lifetime Software

Since the entirety of the Mid.CBF MCS runs in a virtual machine inside Docker containers (refer

to CHAPTER 10 for details), there is minimal dependency on the host operating system and

hardware, thus improving portability.

6.8 Memory and CPU Budget

The memory and CPU budget of the Mid.CBF MCS has not yet been documented.

6.9 Design Standards, Conventions and Procedures

Programming standards adhere to the PEP 8 style guide for Python programming, in as large of a

capacity as possible that does not conflict with TANGO requirements and automatically-

generated code.

The names of the devices of the Mid.CBF MCS adhere to standard TANGO naming conventions

and the SKA1 TANGO naming conventions described in AD3.

Efforts will be made in the future to improve in-code documentation.

6.10 Environment

Refer to CHAPTER 10 for environment details.

6.11 Reliability, Availability and Maintainability

The Mid.CBF MCS implements the following features to improve reliability and robustness:

 State checks in every applicable device when executing a command

 Redundant operations (e.g. clearing a data structure), possibly increasing overhead

 Validation of input arguments in deep commands (e.g. ConfigureScan) without side effects

No special considerations were given to the availability or maintainability of the Mid.CBF MCS

during the design process.

Page 49 of 102
 Revision: 1C

SKA1 Mid.CBF Master Control Software Design Report

7 Software Components

This chapter describes in detail the components of the Mid.CBF MCS identified in CHAPTER 6.

7.1 Mid.CBF Master

Mid.CBF Master registers in the TANGO database with the following FQDN:
 mid_csp_cbf/sub_elt/master

7.1.1 Type

Mid.CBF Master is a TANGO Device Server implemented by the device class CbfMaster.

7.1.2 Development Type

Mid.CBF Master is newly-developed, open-source software.

7.1.3 Function and Purpose

Mid.CBF Master represents a primary point of contact for monitoring and control of Mid.CBF. It

implements state and mode indicators for all Mid.CBF constituents and a set of state transition

commands.

7.1.4 Subordinates

Mid.CBF Master has no immediate subordinates.

7.1.5 Dependencies

In the MVP, Mid.CBF Master, on startup, randomly assigns receptors IDs to the VCCs. For this

reason, the VCC Capabilities must be fully initialized and running when the Mid.CBF Master

initializes. This dependency will be removed in the future, when the link between a VCC and its

correponding receptor is more permanent.

Commands that execute on other devices, namely the commands to transition state, do not

explicitly require the presence of those devices. Any device that is unreachable will simply be

skipped.

Page 50 of 102
 Revision: 1C

SKA1 Mid.CBF Master Control Software Design Report

7.1.6 Interfaces

Mid.CBF Master implements a set of properties, attributes, and commands as an interface

feature.

7.1.6.1 Properties

Mid.CBF Master implements the set of properties listed in TABLE 7-1.

Table 7-1 Mid.CBF Master Properties

Name Type Description

MaxCapabilities (str,) A map of the maximum number of available capabilities
for each capability type. Each element has the form
“<capability type>:<maximum number>”. The capability
types Subarray, VCC, and FSP must be present.

For example, a valid value of this property is
(“Subarray:1”, “VCC:4”, “FSP:4”)

CbfSubarray (str,) An array of the FQDNs of all the Mid.CBF Subarrays.

VCC (str,) An array of the FQDNs of all the Mid.CBF VCC
Capabilities.

FSP (str,) An array of the FQDNs of all the Mid.CBF FSP
Capabilities.

7.1.6.2 Attributes

Mid.CBF Master implements the set of attributes listed in TABLE 7-2.

Table 7-2 Mid.CBF Master Attributes

Name Type Access Description

receptorToVcc (str,) R/O A map of the corresponding VCC for
each receptor. Each element has the
form “<receptor ID>:<VCC ID>”.

vcctoReceptor (str,) R/O A map of the corresponding receptor for
each VCC. Each element has the form
“<VCC ID>:<receptor ID>”.

subarrayConfigID (str,) R/O An array of the IDs of the configurations
in each sub-array. (empty string if
nothing is configured).

reportVCCState (DevState,) R/O An array of the states of each VCC.

Page 51 of 102
 Revision: 1C

SKA1 Mid.CBF Master Control Software Design Report

Name Type Access Description

reportVCCHealthState (uint16,) R/O An array of the health states of each
VCC.

reportVCCAdminMode (uint16,) R/O An array of the admin modes of each
VCC.

reportVCCSubarrayMembership (uint16,) R/O An array of the sub-array affiliations of
each VCC.

reportFSPState (DevState,) R/O An array of the states of each FSP.

reportFSPHealthState (uint16,) R/O An array of the health states of each
FSP.

reportFSPAdminMode (uint16,) R/O An array of the admin modes of each
FSP.

reportFSPSubarrayMembership ((uint16,),) R/O An array of the sub-array affiliations of
each FSP. Each FSP can be affiliated
with up to 16 sub-arrays simultaneously.

reportSubarrayState (DevState,) R/O An array of the states of each Mid.CBF
Subarray.

reportSubarrayHealthState (uint16,) R/O An array of the health states of each
Mid.CBF Subarray.

reportSubarrayAdminMode (uint16,) R/O An array of the admin modes of each
Mid.CBF Subarray.

7.1.6.3 Commands

Mid.CBF Master implements the set of commands listed in TABLE 7-3.

Table 7-3 Mid.CBF Master Commands

Name Input Type Output Type Description

On None None Turn on Mid.CBF, including all the Mid.CBF
Subarrays and Mid.CBF Capabilities.

Allowed only when the state of Mid.CBF
Master is STANDBY.

Off None None Turn off Mid.CBF, including all the Mid.CBF
Subarrays and Mid.CBF Capabilities.

Allowed only when the state of Mid.CBF
Master is STANDBY.

Standby None None Standby Mid.CBF, including all the Mid.CBF
Subarrays and Mid.CBF Capabilities.

Allowed only when the state of Mid.CBF
Master is ON.

Page 52 of 102
 Revision: 1C

SKA1 Mid.CBF Master Control Software Design Report

7.1.7 Resources

Mid.CBF Master requires no particular resources to operate.

7.1.8 References

AD1 and AD2 provide more details on the design and interfaces of Mid.CBF Master.

7.1.9 Data

All important and relevant data of Mid.CBF Master has been exposed as attributes (SECTION

7.1.6.2).

7.2 Mid.CBF Subarray

Mid.CBF Subarray registers in the TANGO database with the following FQDN:
 mid_csp_cbf/sub_elt/subarray_xx

where xx refers to instances 01 through 16 (though only 01 is implemented as part of the MVP).

7.2.1 Type

Mid.CBF Subarray is a TANGO Device Server implemented predominantly by the device class

CbfSubarray (though subordinate devices exist, see SECTION 7.2.4).

7.2.2 Development Type

Mid.CBF Subarray is newly-developed, open-source software.

7.2.3 Function and Purpose

Mid.CBF Subarray implements commands and attributes needed for scan configuration and

execution. In particular, Mid.CBF Subarray gives provision for CSP.LMC (or any other TANGO

Device) to perform the following:

 Add and release resources to and from a particular sub-array

 Configure a scan for imaging

 Perform a scan

 Deconfigure a scan

Page 53 of 102
 Revision: 1C

SKA1 Mid.CBF Master Control Software Design Report

7.2.4 Subordinates

Mid.CBF Subarray has two subordinate devices, which are both instantiations of the

SearchWindow device class. They implement attributes that specify parameters of the two search

windows that can be configured for a scan. They register in the TANGO database with the

following FQDNs:
 mid_csp_cbf/sw1/xx
 mid_csp_cbf/sw2/xx

where xx refers to instances 01 through 16 (though only 01 is implemented as part of the MVP).

7.2.5 Dependencies

Mid.CBF Subarray has no dependencies on startup. It may be initialized before or after the VCC

and FSP Capabilities or Mid.CBF Master. However, the following dependencies exist for

commands:

 Adding and removing receptors requires the presence of Mid.CBF Master and the receptors’
corresponding VCCs that are being added or removed.

 Configuring a scan requires the presence of Mid.CBF Master, the VCCs that were assigned to the
sub-array, and the FSPs specified in the scan parameters. The device whose attributes are given
as subscription points must also be running.

 Ending a scheduling block requires the presence of the FSPs that were assigned to the sub-array
and any device whose attributes were given as subscription points.

Starting and ending a scan do not explicitly require the presence of the assigned VCCs and FSPs.

Any device that is unreachable will simply be skipped.

7.2.6 Interfaces

Mid.CBF Subarray (and, in particular, CbfSubarray) implements a set of properties, attributes,

and commands as an interface feature.

7.2.6.1 Properties

Mid.CBF Subarray implements the set of properties listed in TABLE 7-4.

Table 7-4 Mid.CBF Subarray Properties

Name Type Description

SubID uint16 The ID of the Mid.CBF Subarray.

CbfMasterAddress str The FQDN of Mid.CBF Master.

Page 54 of 102
 Revision: 1C

SKA1 Mid.CBF Master Control Software Design Report

Name Type Description

SW1Address str The FQDN of the Mid.CBF Subarray’s first search
window capability.

SW2Address str The FQDN of the Mid.CBF Subarray’s second search
window capability.

VCC (str,) An array of the FQDNs of all the Mid.CBF VCC
Capabilities (including those not affiliated with the
particular Mid.CBF Subarray).

FSP (str,) An array of the FQDNs of all the Mid.CBF FSP
Capabilities (including those not affiliated with the
particular Mid.CBF Subarray).

FspSubarray (str,) An array of the FQDNs of the Mid.CBF FSP Subarray
Capabilities that belong to the Mid.CBF Subarray.

7.2.6.2 Attributes

Mid.CBF Subarray implements the set of attributes listed in TABLE 7-5.

Table 7-5 Mid.CBF Subarray Attributes

Name Type Access Description

scanID uint R/O The ID of the scan currently being
executed (0 if no scan is active).

frequencyBand DevEnum R/O The frequency band being observed by
the current scan.

The enumeration is as follows:

 0: “1”

 1: “2”

 2: “3”

 3: “4”

 4: “5a”

 5: “5b”

receptors (uint16,) R/W An array of the receptor IDs currently
assigned to the Mid.CBF Subarray.

vccState (DevState,) R/O An array of the states of each VCC
currently affiliated with the Mid.CBF
Subarray.

vccHealthState (uint16,) R/O An array of the health states of each VCC
currently affiliated with the Mid.CBF
Subarray.

Page 55 of 102
 Revision: 1C

SKA1 Mid.CBF Master Control Software Design Report

Name Type Access Description

fspState (DevState,) R/O An array of the states of each FSP
currently affiliated with the Mid.CBF
Subarray.

fspHealthState (uint16,) R/O An array of the health states of each FSP
currently affiliated with the Mid.CBF
Subarray.

fspList (uint16,) R/O List of FSPs used by subarray

latestScanConfig (uint16,) R/O Saves the last scan configuration. So that
we can refer to it even if the device is
deconfigured

configID str R/O Configuration ID. Comes with each
configureScan JSON, in which it is called
“id”.

7.2.6.3 Commands

Mid.CBF Subarray implements the set of commands listed in TABLE 7-6.

Note:

- CBF Subarray uses Base Class 0.6.0 new scheme. Most of the output is a success message. In the
old scheme, in most cases there will be no output.

- With the new scheme, a certain command is allowed or not is determined by the base class
according to the current state. So there is no “is_xxx_allowed” function implemented.

Table 7-6 Mid.CBF Subarray Commands

Name Input Type Output Type Description

On None DevVarLongS
tringArray(
message)

Enable the Mid.CBF Subarray (which sends
it to ON state) and turn on its two search
window capabilities.

Off None DevVarLongS
tringArray(
message)

Disable the Mid.CBF Subarray (which
sends it to DISABLE state) and turn off its
two search window capabilities.

AddReceptors (uint16,) DevVarLongS
tringArray(
message)

Add the specified receptors to the Mid.CBF
Subarray.

Allowed only when the Mid.CBF Subarray is
enabled and its observing state is EMPTY /
IDLE.

Page 56 of 102
 Revision: 1C

SKA1 Mid.CBF Master Control Software Design Report

Name Input Type Output Type Description

RemoveReceptors (uint16,) DevVarLongS
tringArray(
message)

Remove the specified receptors from the
Mid.CBF Subarray.

Allowed only when the Mid.CBF Subarray is
enabled and its observing state is IDLE.

RemoveAllReceptors None DevVarLongS
tringArray(
message)

Remove all the receptors currently assigned
to the Mid.CBF Subarray. The Observing
state will consequently turn to EMPTY

Allowed only when the Mid.CBF Subarray is
enabled and its observing state is IDLE.

ConfigureScan str DevVarLongS
tringArray(
message)

Configure a scan. The input is a serialized
JSON object with the scan parameters.

An example is given in SECTION 15.1.

Allowed only when the state of the Mid.CBF
Subarray is ON and its observing state is
IDLE or READY.

ConfigureSearchWindow str None Configure a search window. The input is a
serialized JSON object with the search
window parameters.

An example is given in SECTION 15.1.

Allowed only when the state of the Mid.CBF
Subarray is ON and its observing state is
CONFIGURING.

Note: This command is internal to the
Mid.CBF MCS.

Scan int DevVarLongS
tringArray(
message)

Start the scan with a specific scan ID.

Allowed only when the state of the Mid.CBF
Subarray is ON and its observing state is
READY.

EndScan None DevVarLongS
tringArray(
message)

End the scan.

Allowed only when the state of the Mid.CBF
Subarray is ON and its observing state is
SCANNING.

Abort None DevVarLongS
tringArray(
message)

Abort From IDLE, CONFIGURING, READY,
or SCANNING ObsState, and enter state
ABORTED.

GoToIdle None DevVarLongS
tringArray(
message)

Deconfigure the scan configuration. Set
ObsState from READY to IDLE.

Page 57 of 102
 Revision: 1C

SKA1 Mid.CBF Master Control Software Design Report

Name Input Type Output Type Description

ObsReset None DevVarLongS
tringArray(
message)

Deconfigure the scan configuration. From
ObsState ABORTED or FAULT, reset
ObsState to IDLE.

Restart None DevVarLongS
tringArray(
message)

Deconfigure and release all the receptors.
From ObsState ABORTED or FAULT, reset
ObsState to EMPTY.

7.2.7 Resources

Mid.CBF Subarray requires no particular resources to operate.

7.2.8 References

AD1 and AD2 provide more details on the design and interfaces of Mid.CBF Subarray.

7.2.9 Data

All important and relevant data of Mid.CBF Subarray has been exposed as attributes (SECTION

7.2.6.2).

7.3 Mid.CBF VCC Capability

Mid.CBF VCC Capability registers in the TANGO database with the following FQDN:
 mid_csp_cbf/vcc/xxx

where xxx refers to instances 001 through 197 (though only 001 through 004 are implemented as

part of the MVP).

7.3.1 Type

Mid.CBF VCC Capability is a TANGO Device Server implemented predominantly by the device

class Vcc (though subordinate devices exist, see SECTION 7.3.4).

7.3.2 Development Type

Mid.CBF VCC Capability is newly-developed, open-source software.

Page 58 of 102
 Revision: 1C

SKA1 Mid.CBF Master Control Software Design Report

7.3.3 Function and Purpose

Mid.CBF VCC Capability provides a high-level interface for monitor and control of a VCC on a

TALON-DX board. It implements commands and attributes needed for scan configuration and

execution, and in particular allows the configuration of the observed frequency band, search

windows, and delay model updates.

7.3.4 Subordinates

Mid.CBF VCC Capability has six subordinate devices. Four of these devices instantiate the

VccBand1And2, VccBand3, VccBand4, and VccBand5 device classes that specify the operative

frequency band of a scan. They register in the TANGO database with the following FQDNs:
 mid_csp_cbf/vcc_band12/xxx
 mid_csp_cbf/vcc_band3/xxx
 mid_csp_cbf/vcc_band4/xxx
 mid_csp_cbf/vcc_band5/xxx

where xxx refers to instances 001 through 197 (though only 001 through 004 are implemented as

part of the MVP).

The remaining two subordinate devices both instantiate the VccSearchWindow device class, which

implement attributes that specify parameters of the two search windows on a VCC. They register

in the TANGO database with the following FQDNS:
 mid_csp_cbf/vcc_sw1/xxx
 mid_csp_cbf/vcc_sw2/xxx

where xxx refers to instances 001 through 197 (though only 001 through 004 are implemented as

part of the MVP).

7.3.5 Dependencies

Mid.CBF VCC Capability has no dependencies on startup. It may be initialized before or after

the FSP Capabilities, Mid.CBF Subarrays, or Mid.CBF Master. Additionally, no dependencies

on other devices exist for command execution.

7.3.6 Interfaces

Mid.CBF VCC Capability (and, in particular, Vcc) implements a set of properties, attributes, and

commands as an interface feature.

7.3.6.1 Properties

Mid.CBF VCC Capability implements the set of properties listed in TABLE 7-7.

Page 59 of 102
 Revision: 1C

SKA1 Mid.CBF Master Control Software Design Report

Table 7-7 Mid.CBF VCC Capability Properties

Name Type Description

VccID uint16 The ID of the Mid.CBF VCC Capability.

Band1And2Address str The FQDN of the VCC’s capability for observing in
frequency bands “1” and “2”.

Band3Address str The FQDN of the VCC’s capability for observing in
frequency band “3”.

Band4Address str The FQDN of the VCC’s capability for observing in
frequency band “4”.

Band5Address str The FQDN of the VCC’s capability for observing in
frequency bands “5a” and “5b”.

SW1Address str The FQDN of the VCC’s first search window capability.

SW2Address str The FQDN of the VCC’s second search window
capability.

7.3.6.2 Attributes

Mid.CBF VCC Capability implements the set of attributes listed in TABLE 7-8.

Table 7-8 Mid.CBF VCC Capability Attributes

Name Type Access Description

receptorID uint16 R/O The ID of the VCC’s correponding receptor.

subarrayMembership uint16 R/W The sub-array affiliation of the VCC (0 if no
affiliation).

frequencyBand DevEnum R/O The frequency band being observed by the
current scan.

The enumeration is as follows:

 0: “1”

 1: “2”

 2: “3”

 3: “4”

 4: “5a”

 5: “5b”

band5Tuning (float,) R/W The stream tuning for frequency bands “5a”
and “5b”, in GHz. The first element
corresponds to the first stream, and the
second element corresponds to the second
stream.

Page 60 of 102
 Revision: 1C

SKA1 Mid.CBF Master Control Software Design Report

frequencyBandOffsetStream1 int R/W The frequency offset of the first stream, in
Hz.

frequencyBandOffsetStream2 int R/W The frequency offset of the second stream,
in Hz.

delayModel ((float,),) R/O The current active delay model for each of
26 frequency slices. Each delay model
consists of 6 coefficients representing a
fifth-order polynomial.

configID str R/W Configuration ID. It is set when subarray
issues command configureScan. The input
JSON propogates information to VCC, in
which it is called “id”.

scanID int R/W ID of a scan execution, propagated from
subarray when transition to SCANNING is
performed.

7.3.6.3 Commands

Mid.CBF VCC Capability implements the set of commands listed in TABLE 7-9.

Table 7-9 Mid.CBF VCC Capability Commands

Name Input Type Output Type Description

On None None Turn on the VCC, including its frequency
band and search window capabilities.

Allowed only when the state of the VCC is
OFF and its observing state is IDLE.

Off None None Turn off the VCC, including its frequency
band and search window capabilities.

Allowed only when the state of the VCC is
ON and its observing state is IDLE.

SetFrequencyBand str None Set the frequency band of the VCC. The
corresponding frequency band capability
enters the ON state, and all others enter the
DISABLE state.

Allowed only when the state of the VCC is
ON and its observing state is
CONFIGURING.

SetObservingState uint16 None Set the observing state of the VCC to
CONFIGURING (1) or READY (2).

Allowed only when the state of the VCC is
ON and its observing state is IDLE,
CONFIGURING, or READY.

Page 61 of 102
 Revision: 1C

SKA1 Mid.CBF Master Control Software Design Report

Name Input Type Output Type Description

Note: This command is internal to the
Mid.CBF MCS.

UpdateDelayModel str None Update the VCC’s delay model. The input is
a serialized JSON object with the delay
model coefficients.

An example is given in SECTION 15.2.

Allowed only when the state of the VCC is
ON and its observing state is READY or
SCANNING.

Note: This command is internal to the
Mid.CBF MCS.

ValidateSearchWindow str None Validate a search window configuration.
The input is a serialized JSON object with
the search window parameters.

An example is given in SECTION 15.1.

Allowed in all states and observing states.

Note: This command is internal to the
Mid.CBF MCS.

ConfigureSearchWindow str None Configure a search window. The input is a
serialized JSON object with the search
window parameters.

An example is given in SECTION 15.1.

Allowed only when the state of the VCC is
ON and its observing state is
CONFIGURING.

Note: This command is internal to the
Mid.CBF MCS.

Scan Uint16 None Start the scan.(controlled by the subarray)

Allowed only when the state of the VCC is
ON and its observing state is READY.

EndScan None None End the scan.

Allowed only when the state of the VCC is
ON and its observing state is SCANNING.

GoToIdle None None Transition to an IDLE observing state.

Allowed only when the state of the VCC is
ON and its observing state is IDLE or
READY.

7.3.7 Resources

Mid.CBF VCC Capability requires no particular resources to operate.

Page 62 of 102
 Revision: 1C

SKA1 Mid.CBF Master Control Software Design Report

7.3.8 References

AD1 and AD2 provide more details on the design and interfaces of Mid.CBF VCC Capability.

7.3.9 Data

All important and relevant data of Mid.CBF VCC Capability has been exposed as attributes

(SECTION 7.3.6.2).

7.4 Mid.CBF FSP Capability

Mid.CBF FSP Capability registers in the TANGO database with the following FQDN:
 mid_csp_cbf/fsp/xx

where xx refers to instances 01 through 27 (though only 01 through 04 are implemented as part of

the MVP).

7.4.1 Type

Mid.CBF FSP Capability is a TANGO Device Server implemented predominantly by the device

class Fsp (though subordinate devices exist, see SECTION 7.4.4).

7.4.2 Development Type

Mid.CBF FSP Capability is newly-developed, open-source software.

7.4.3 Function and Purpose

Mid.CBF FSP Capability provides a high-level interface for monitor and control of an FSP on a

TALON-DX board. It implements commands and attributes needed for scan configuration and

execution, and in particular allows the configuration of the function mode (only

CORRELATION for the MVP) and enables signal processing capability during a scan.

7.4.4 Subordinates

Mid.CBF FSP Capability has a number of subordinate devices. Four of these devices instantiate

the FspCorr, FspPss, FspPst, and FspVlbi device classes that specify the FSP’s operative

function mode. They register in the TANGO database with the following FQDNs:
 mid_csp_cbf/fsp_corr/xx
 mid_csp_cbf/fsp_pss/xx

Page 63 of 102
 Revision: 1C

SKA1 Mid.CBF Master Control Software Design Report

 mid_csp_cbf/fsp_pst/xx
 mid_csp_cbf/fsp_vlbi/xx

where xx refers to instances 01 through 27 (though only 01 through 04 are implemented as part of

the MVP).

The remaining subordinate devices instantiate the FspSubarray device class, which is detailed in

SECTION 7.5.

7.4.5 Dependencies

The dependencies of Mid.CBF FSP Subarray Capability are detailed separately in SECTION

7.5.5.

Mid.CBF FSP Capability has no dependencies on startup. It may be initialized before or after the

VCC Capabilities, Mid.CBF Subarrays, or Mid.CBF Master. Additionally, no dependencies on

other devices exist for command execution.

7.4.6 Interfaces

Mid.CBF FSP Capability (and, in particular, Fsp) implements a set of properties, attributes, and

commands as an interface feature.

7.4.6.1 Properties

Mid.CBF FSP Capability implements the set of properties listed in TABLE 7-10.

Table 7-10 Mid.CBF FSP Capability Properties

Name Type Description

FspID uint16 The ID of the Mid.CBF FSP Capability.

CorrelationAddress str The FQDN of the FSP’s capability for correlation.

PSSAddress str The FQDN of the FSP’s capability for PSS.

PSTAddress str The FQDN of the FSP’s capability for PST.

VLBIAddress str The FQDN of the FSP’s capability for VLBI.

FspSubarray (str,) An array of the FQDNs of the Mid.CBF FSP Subarray
Capabilities that belong to the FSP.

7.4.6.2 Attributes

Mid.CBF FSP Capability implements the set of attributes listed in TABLE 7-11.

Page 64 of 102
 Revision: 1C

SKA1 Mid.CBF Master Control Software Design Report

Table 7-11 Mid.CBF FSP Capability Attributes

Name Type Access Description

functionMode DevEnum R/O The current function mode of the FSP.

The enumeration is as follows:

 0: “IDLE”

 1: “CORRELATION”

 2: “PSS”

 3: “PST”

 4: “VLBI”

subarrayMembership (uint16,) R/O An array of the sub-array affiliations of the FSP
(empty if no affiliation).

7.4.6.3 Commands

Mid.CBF FSP Capability implements the set of commands listed in TABLE 7-12.

Table 7-12 Mid.CBF FSP Capability Commands

Name Input Type Output Type Description

On None None Turn on the FSP, including its function
mode and FSP Subarray capabilities.

Allowed only when the state of the FSP
is OFF.

Off None None Turn off the FSP, including its function
mode and FSP Subarray capabilities.

Allowed only when the state of the FSP
is ON.

SetFunctionMode str None Set the function mode of the FSP. The
corresponding function mode capability
enters the ON state, and all others enter
the DISABLE state.

Allowed only when the state of the FSP
is ON.

AddSubarrayMembership uint16 None Affiliate the FSP with a sub-array.

Allowed only when the state of the FSP
is ON.

Note: This command is internal to the
Mid.CBF MCS.

RemoveSubarrayMembership uint16 None Disaffiliate the FSP from a sub-array.

Allowed only when the state of the FSP
is ON.

Page 65 of 102
 Revision: 1C

SKA1 Mid.CBF Master Control Software Design Report

Note: This command is internal to the
Mid.CBF MCS.

getConfigID None DevString Returns a JSON object as a string.

Includes all the fspCorrSubarray and
their configID attribute.

7.4.7 Resources

Mid.CBF FSP Capability requires no particular resources to operate.

7.4.8 References

AD1 and AD2 provide more details on the design and interfaces of Mid.CBF FSP Capability.

7.4.9 Data

All important and relevant data of Mid.CBF FSP Capability has been exposed as attributes

(SECTION 7.4.6.2).

7.5 Mid.CBF FSP Subarray Capability

Mid.CBF FSP Subarray Capability registers in the TANGO database with the following FQDN:
 mid_csp_cbf/fspCorrSubarray/xx_yy

mid_csp_cbf/fspPssSubarray/xx_yy
mid_csp_cbf/fspPstSubarray/xx_yy
mid_csp_cbf/fspVlbiSubarray/xx_yy

where xx refers to FSP instances 01 through 27 and yy refers to sub-array instances 01 through 16

(though only FSPs 01 through 04 and sub-array 01 are implemented as part of the MVP).

7.5.1 Type

Mid.CBF FSP Subarray Capability is a TANGO Device Server implemented by the device class

FspCorrSubarray.

FspPssSubarray.

FspVlbiSubarray.

FspPstSubarray.

7.5.2 Development Type

Mid.CBF FSP Subarray Capability is newly-developed, open-source software.

Page 66 of 102
 Revision: 1C

SKA1 Mid.CBF Master Control Software Design Report

7.5.3 Function and Purpose

Mid.CBF FSP Subarray Capability implements commands and attributes needed for scan

configuration and execution on an FSP.

7.5.4 Subordinates

Mid.CBF FSP Subarray Capability has no immediate subordinates.

7.5.5 Dependencies

Mid.CBF FSP Subarray Capability has no dependencies on startup. It may be initialized before

or after the VCC Capabilities, Mid.CBF Subarrays, or Mid.CBF Master. However, the following

dependencies exist for commands:

 Adding receptors requires the presence of Mid.CBF Master and the receptors’ corresponding
VCCs that are being added or removed.

7.5.6 Interfaces

Mid.CBF FSP Subarray Capability implements a set of properties, attributes, and commands as

an interface feature.

7.5.6.1 Properties

Mid.CBF FspCorrSubarray Capability implements the set of properties listed in TABLE 7-13.

Table 7-13 Mid.CBF FspCorrSubarray Capability Properties

Name Type Description

SubID uint16 The Subarray ID of the Mid.CBF FSP Subarray
Capability.

FspID uint16 The FSP ID of the Mid.CBF FSP Subarray Capability.

CbfMasterAddress str The FQDN of Mid.CBF Master.

CbfSubarrayAddress str The FQDN of the Mid.CBF Subarray that the FSP
Subarray belongs to.

VCC (str,) An array of the FQDNs of all the Mid.CBF VCC
Capabilities.

Page 67 of 102
 Revision: 1C

SKA1 Mid.CBF Master Control Software Design Report

7.5.6.2 Attributes

Mid.CBF FspCorrSubarray Capability implements the set of attributes listed in TABLE 7-14.

Table 7-14 Mid.CBF FspCorrSubarray Capability Attributes

Name Type Access Description

receptors (uint16,) R/W An array of the receptor IDs currently
assigned to the FSP Subarray.

frequencyBand DevEnum R/O The frequency band being observed
by the current scan.

The enumeration is as follows:

 0: “1”

 1: “2”

 2: “3”

 3: “4”

 4: “5a”

 5: “5b”

band5Tuning (float,) R/O The stream tuning for frequency
bands “5a” and “5b”, in GHz. The first
element corresponds to the first
stream, and the second element
corresponds to the second stream.

frequencyBandOffsetStream1 int R/O The frequency offset of the first
stream, in Hz.

frequencyBandOffsetStream2 int R/O The frequency offset of the second
stream, in Hz.

frequencySliceID uint16 R/O The frequency slice being correlated.

corrBandwidth uint16 R/O The bandwidth to be correlated is the
full bandwidth of the frequency slice
divided by 2 raised to the power of
this attribute’s value.

For example, if the value of this
attribute is 4, only a quarter of the full
frequency slice is correlated.

zoomWindowTuning uint R/O The center frequency of the spectral
zoom window, in kHz, if not the full
frequency slice is being correlated.

integrationTime uint16 R/O The integration time, in milliseconds.

channelAveragingMap ((uint16,),) R/O The channel averaging map currently
being used. Each element in the array
is a tuple, where the first element is

Page 68 of 102
 Revision: 1C

SKA1 Mid.CBF Master Control Software Design Report

Name Type Access Description

the ID of the first channel in a channel
group for which the channel
averaging factor given in the second
element is applicable.

visDestinationAddress str R/W Stores Destination addresses for
visibilities, given as a JSON object

fspChannelOffset DevLong R/W Fsp channel offset. To specify the
starting fsp channel. Typically a
multiple of 14480.

outputLinkMap ((‘DevUlong64’)) R/O 2*40 array for outputLinkMap

scanID DevLong64 R/W scanID, propagated from subarray
when transition to SCANNING is
performed

configID str R/W scanID, propagated from subarray
when transition to READY is
performed

7.5.6.3 Commands

Mid.CBF FspCorrSubarray Capability implements the set of commands listed in TABLE 7-15.

Table 7-15 Mid.CBF FspCorrSubarray Capability Commands

Name Input Type Output Type Description

On None None Turn on the FSP Subarray.

Allowed only when the state of the FSP
Subarray is OFF and its observing state is
IDLE.

Off None None Turn of the FSP Subarray.

Allowed only when the state of the FSP
Subarray is ON and its observing state is IDLE.

AddReceptors (uint16,) None Add the specified receptors to the FSP
Subarray.

Allowed only when the state of the FSP
Subarray is ON and its observing state is IDLE,
CONFIGURING, or READY.

Note: This command is internal to the Mid.CBF
MCS.

RemoveReceptors (uint16,) None Remove the specified receptors from the FSP
Subarray.

Page 69 of 102
 Revision: 1C

SKA1 Mid.CBF Master Control Software Design Report

Name Input Type Output Type Description

Allowed only when the state of the FSP
Subarray is ON and its observing state is IDLE,
CONFIGURING, or READY.

Note: This command is internal to the Mid.CBF
MCS.

RemoveAllReceptors None None Remove all the receptors currently assigned to
the FSP Subarray.

Allowed only when the state of the FSP
Subarray is ON and its observing state is IDLE,
CONFIGURING, or READY.

Note: This command is internal to the Mid.CBF
MCS.

AddChannels str None Add channel frequency information to an FSP
Subarray. The input is a serialized JSON object
with the required information.

An example is given in SECTION 0.

Allowed only when the state of the FSP
Subarray is ON and its observing state is
CONFIGURING.

Note: This command is internal to the Mid.CBF
MCS.

AddChannelAddresses str None Add channel address information to an FSP
Subarray. The input is a serialized JSON object
with the required information.

An example is given in SECTION 0.

Allowed only when the state of the FSP
Subarray is ON and its observing state is
CONFIGURING.

Note: This command is internal to the Mid.CBF
MCS.

ConfigureScan str None Configure a scan. The input is a serialized
JSON object with the scan parameters.

An example is given in SECTION 15.1.

Allowed only when the state of the FSP
Subarray is ON and its observing state is IDLE
or READY.

Note: This command is internal to the Mid.CBF
MCS.

Scan unit16 None Start the scan. (signal is sent by the subarray)

Allowed only when the state of the FSP
Subarray is ON and its observing state is
READY.

Page 70 of 102
 Revision: 1C

SKA1 Mid.CBF Master Control Software Design Report

Name Input Type Output Type Description

EndScan None None End the scan.

Allowed only when the state of the FSP
Subarray is ON and its observing state is
SCANNING.

GoToIdle None None Transition to an IDLE observing state.

Allowed only when the state of the FSP
Subarray is ON and its observing state is IDLE
or READY.

GetLinkAndAddress None Str(JSON
format)

Get destination addresses in the form of JSON
for this fspCorrSubarray. These information is
given to fspCorrSubarray when a subarray
issues configreScan Command. The output will
be in the format of:

{“outputlink”: 0, “outputHost”: “”, outputMac “”,
outputPort: 0}

7.5.6.4 Properties

Mid.CBF FspPssSubarray Capability implements the set of properties listed in TABLE 7-13.

Table 7-16 Mid.CBF FspPssSubarray Capability Properties

Name Type Description

SubID uint16 The Subarray ID of the Mid.CBF FSP Subarray
Capability.

FspID uint16 The FSP ID of the Mid.CBF FSP Subarray Capability.

CbfMasterAddress str The FQDN of Mid.CBF Master.

CbfSubarrayAddress str The FQDN of the Mid.CBF Subarray that the FSP
Subarray belongs to.

VCC (str,) An array of the FQDNs of all the Mid.CBF VCC
Capabilities.

7.5.6.5 Attributes

Mid.CBF FspPssSubarray Capability implements the set of attributes listed in TABLE 7-14.

Page 71 of 102
 Revision: 1C

SKA1 Mid.CBF Master Control Software Design Report

Table 7-17 Mid.CBF FspPssSubarray Capability Attributes

Name Type Access Description

receptors (uint16,) R/W An array of the receptor IDs currently
assigned to the FSP Subarray.

searchBeams (str,) R/O List of searchBeams assigned to
FspSubarray in JSON format

searchWindowID (uint16,) R/O Identifier of the Search Window to be used
as input for beamforming on this FSP.

searchBeamID (uint16,) R/O List of SearchBeam Id’s being used by the
FspPssSubarray

outputEnable int R/O Enable/disable transmission of output
products.

frequencySliceID uint16 R/O The frequency offset of the second stream,
in Hz.

7.5.6.6 Commands

Mid.CBF FspPssSubarray Capability implements the set of commands listed in TABLE 7-15.

Table 7-18 Mid.CBF FspPssSubarray Capability Commands

Name Input Type Output Type Description

On None None Turn on the FSP Subarray.

Allowed only when the state of the FSP
Subarray is OFF and its observing state is
IDLE.

Off None None Turn of the FSP Subarray.

Allowed only when the state of the FSP
Subarray is ON and its observing state is IDLE.

AddReceptors (uint16,) None Add the specified receptors to the FSP
Subarray.

Allowed only when the state of the FSP
Subarray is ON and its observing state is IDLE,
CONFIGURING, or READY.

Note: This command is internal to the Mid.CBF
MCS.

RemoveReceptors (uint16,) None Remove the specified receptors from the FSP
Subarray.

Allowed only when the state of the FSP
Subarray is ON and its observing state is IDLE,
CONFIGURING, or READY.

Page 72 of 102
 Revision: 1C

SKA1 Mid.CBF Master Control Software Design Report

Name Input Type Output Type Description

Note: This command is internal to the Mid.CBF
MCS.

RemoveAllReceptors None None Remove all the receptors currently assigned to
the FSP Subarray.

Allowed only when the state of the FSP
Subarray is ON and its observing state is IDLE,
CONFIGURING, or READY.

Note: This command is internal to the Mid.CBF
MCS.

ConfigureScan str None Configure a scan. The input is a serialized
JSON object with the scan parameters.

An example is given in SECTION 15.1.

Allowed only when the state of the FSP
Subarray is ON and its observing state is IDLE
or READY.

Note: This command is internal to the Mid.CBF
MCS.

Scan None None Start the scan.

Allowed only when the state of the FSP
Subarray is ON and its observing state is
READY.

EndScan None None End the scan.

Allowed only when the state of the FSP
Subarray is ON and its observing state is
SCANNING.

GoToIdle None None Transition to an IDLE observing state.

Allowed only when the state of the FSP
Subarray is ON and its observing state is IDLE
or READY.

7.5.7 Resources

Mid.CBF FSP Subarray Capability requires no particular resources to operate.

7.5.8 References

AD1 and AD2 provide more details on the design and interfaces of Mid.CBF FSP Subarray

Capability.

Page 73 of 102
 Revision: 1C

SKA1 Mid.CBF Master Control Software Design Report

7.5.9 Data

Most important and relevant data of Mid.CBF FSP Subarray Capability has been exposed as

attributes (SECTION 7.5.6.2).

Internally, the attribute visDestinationAddress is stored as a table where, for each fine channel

configured to be sent to SDP, the channel’s ID, bandwidth, center frequency, assigned Mid.CBF

output link ID, assigned SDP host IP, and assigned SDP host port are listed.

7.6 Internal Interfaces

Refer to SECTION 6.3 for details on software behavior, including descriptions of message flow

between the various components of the Mid.CBF MCS.

7.7 Requirements to Design Components Traceability

Traceability matrices have not yet been produced.

Page 74 of 102
 Revision: 1C

SKA1 Mid.CBF Master Control Software Design Report

8 Control and Monitor Parameters, Indicators and Messages

This section is largely inapplicable to the Mid.CBF MCS; the purpose of the MCS itself is to

monitor and control the TALON-DX boards that implement signal processing functionality. The

operational health and state reported by each TANGO Device reports the health and state of the

devices themselves, as well as any subordinate devices and components. This has been detailed

in SECTION 6.3 and CHAPTER 7.

Page 75 of 102
 Revision: 1C

SKA1 Mid.CBF Master Control Software Design Report

9 WebJive User Interfaces

The Mid.CBF MCS provides a WebJive GUI (FIGURE 9-1), which can be accessed through

localhost:22484/testdb/ once the Docker containers are running (refer to SECTION 10). The

devices can be explored, their states and attributes viewed (FIGURE 9-2), and commands sent

(FIGURE 9-3).

Note the WebJive interface is out of date as of August 2020.

Developers usually use Jive to visualize the TANGO objects (described in the “user guide”

chapter).

Figure 9-1 WebJive GUI landing

Page 76 of 102
 Revision: 1C

SKA1 Mid.CBF Master Control Software Design Report

Figure 9-2 WebJive GUI viewing attributes

Page 77 of 102
 Revision: 1C

SKA1 Mid.CBF Master Control Software Design Report

Figure 9-3 WebJive GUI sending commands

Dashboards can be created to display custom information (FIGURE 9-4), though this feature

currently has limited functionality. Additionally, since these are stored and persist locally, none

are provided out-of-the-box.

Page 78 of 102
 Revision: 1C

SKA1 Mid.CBF Master Control Software Design Report

Figure 9-4 WebJive GUI custom dashboard

Page 79 of 102
 Revision: 1C

SKA1 Mid.CBF Master Control Software Design Report

10 User Guide and Development Environment

This chapter details the set-up of a development and run-time environment for the Mid.CBF

MCS. It is a developers’ guide to recreate the same working environment and provides

developers some basic knowledge.

There are several documentation that you need to read to get a feel of what mid-CBF-MCS is.

1. Look at the Mid-CBF-MCS power point for the Aug.2020 HAA tech talk, that should provide a big
picture about the project and software

2. TANGO documentation. TANGO is the main framework we use in this software. The
documentation is very long, read at least chapter 4 device server, that is the most important
chapter

3. This documentation(Mid-CBF-MCS MVP): chapter 6-7 spefically. This is the description of the
software, very useful for developer who is new and will be working on the project.

4. ICD & DDD: This is the high level design specification of CSP, only part of it apply to Mid-CBF-
MCS. Make sure to pay more attention to those chapters.

5. Learn basic idea about docker, and docker commands. You will be working with only a few basic
commands most of the times. You can find them later in this chapter.

At the same time, you should download the system and run it yourself. The following is a guide

on how to download, start, run, develop and publish the Mid-CBF-MCS software.

10.1 Setting Up Ubuntu Subsystem

To compile this project and begin development you need to set up your IDE (Integrated
development environment). The first step in this setup is downloading and running Ubuntu
18.04 on a virtual machine. An Ubuntu image is essentially a snapshot of an operating system
that you will be running on a virtual box, which is a program used to run different OS on a
windows computer (similar to bootcamp for MacOS). The following ubuntu link downloads the
.vdi image with a preset password “osboxes.org”.

Virtualbox Download: VirtualBox

Ubuntu Image Download: Ubuntu Image

Steps:

1. Install virtual box

https://www.virtualbox.org/wiki/Downloads
https://sourceforge.net/projects/osboxes/files/v/vb/55-U-u/18.04/18.04.2/18042.64.7z/download

Page 80 of 102
 Revision: 1C

SKA1 Mid.CBF Master Control Software Design Report

2. Open up file downloaded from sourceforge for the ubuntu image with 7-zip and extract the
“Ubuntu 18.04.2 (64bit).vdi” file into a known directory

3. Open up the virtual box software and click “new” and run through the setup process, on the
Hard Disk option screen choose “use and existing virtual hard disk file” and then choose the VDI
file that you extracted in step two.

4. Run the OS in virtualbox and login to the ubuntu OS. The login screen should show the account
“osboxes.org” it will ask for a password, this is a default account the virtual machine creates for
you and the password is “osboxes.org” (you can change the name and password in account
settings once you are logged in”)

Note: You can also choose to download .iso file from the offcial Ubuntu site, that way you can
set your own preferences and password from the beginning.

10.1.1 Improving Virtual Machine Performance

Most of the development will be done in this ubuntu subsystem so allowing access to more

system resources, escpecially for applications that require more ram and cpu usage
1. Open VirtualBox and open up settings on the VM you want to improve performance on:

2. Open the system tab:

i. Motherboard Tab: Increase base memory to the end of the green line
ii. Processor Tab:Increase processors to the end of the green line

3. Screen Tab: Increase base memory to the end of the green line

i. Screen Tab: Increase base memory to the end of the green line

4. Open the General Tab:

i. Advanced Tab: Shared Clipboard: Bidirectional (you can now copy and
paste things between windows and ubuntu)

10.1.2 Sharing Files Between Windows and VirtualBox Ubuntu

Throughout the development proccess there will be instances where you want to bring files

between the windows machine and the ubuntu subsystem setting up this folder that allows for

file transfer between systems is very important and can be done following the steps listed below.

1. Open VirtualBox and open up settings on the VM you want a shared folder on

2. Go to shared folders section and click add a new shared folder

Page 81 of 102
 Revision: 1C

SKA1 Mid.CBF Master Control Software Design Report

3. Select a path for the shared folder on your windows machine and use folder name “shared”

4. Uncheck Read-only and Auto-mount, and check Make Permanent

5. Start up your VM and login, on the top menu bar click Devices->Insert Guest Addition CD image.

6. Use the following command to mount the CD, install dependencies and run the installation
script and then reboot the VM:

$ sudo mount /dev/cdrom /media/cdrom
$ sudo apt-get update
$ sudo apt-get install build-essential linux-headers-`uname -r`
$ sudo /media/cdrom/./VBoxLinuxAdditions.run
$ sudo shutdown -r now

7. Open up console and create a shared directory and then mount the shared folder from your
host into your ~/shared directory

$ mkdir ~/shared
$ sudo mount -t vboxsf shared ~/shared

This directory is only temporary and will disappear after your ned reboot, to make this
file permanent follow these next steps:

8. Edit the fstab file in the etc directory and then add the following line to fstab run the command
separated by tabs and then press Ctrl+O to save

$ sudo nano /etc/fstab
$ shared /home/<username>/shared vboxsf defaults 0 0

Ctrl + O

9. Edit the modules file in the etc directory and add Vboxsf line to modules and then press Ctrl+O
to save and then reboot the VMusing command:

$ sudo nano /etc/modules
$ Vboxsf

Ctrl + O
$ sudo shutdown –r now

Page 82 of 102
 Revision: 1C

SKA1 Mid.CBF Master Control Software Design Report

10. Go to your home directory and check to see if the file is highlighted in green if it is then you
have successfully made the folder permanent.

$ cd ~
$ ls

10.2 Software Enviroment

10.2.1 Setting up Tango Enviroment

Setting up the tango enviroment is the next step in this starting guide. Most of the enviroment set

up is automated and is installed and configured using the ansible playbook script and the docker

compose script. These scripts will install the programs and modules listed below:

- python version 3.7

- TANGO-controls ‘9.3.3’

- Visual Studio Code, PyCharm Community Edition

- ZEROMQ ‘4.3.2’

- OMNIORB ‘4.2.3’

Run the following commands in your terminal, it will clone the ansible playbook repository,

install it, and then run the script and set up the enviroment, if you experience issues with the

script ask questions in the #team-system-support slack channel. The following instruction can be

also found at the developer’s portal: https://developer.skatelescope.org/en/latest/tools/tango-

devenv-setup.html

$ sudo apt -y install git
$ git clone https://gitlab.com/ska-telescope/ansible-playbooks
$ cd ansible-playbooks
$ sudo apt-add-repository --yes --update ppa:ansible/ansible && sudo apt -y install
ansible
$ ansible-playbook -i hosts deploy_tangoenv.yml --extra-vars
"ansible_become_pass=osboxes.org"
$ sudo reboot

Trouble shooting:

- If you set your own password for the virtual machine, change
"ansible_become_pass=osboxes.org" to "ansible_become_pass=<your own password"

- If you encounter python related problem with the ansible command, try to
specify the python version with anisible script, for example:

https://developer.skatelescope.org/en/latest/tools/tango-devenv-setup.html
https://developer.skatelescope.org/en/latest/tools/tango-devenv-setup.html
https://gitlab.com/ska-telescope/ansible-playbooks

Page 83 of 102
 Revision: 1C

SKA1 Mid.CBF Master Control Software Design Report

$ ansible-playbook -i hosts deploy_tangoenv.yml --extra-vars
"ansible_become_pass=osboxes.org" -e ansible_python_interpreter=/usr/bin/python2

Using python2 like above may solve the problem for you.

10.2.2 Setting up Mid-CBF-MCS

When the steps outlined in the previous sections are complete, the Mid.CBF MCS Gitlab

repository may be cloned

$ git clone https://gitlab.com/ska-telescope/mid-cbf-mcs.git

$ cd mid-cbf-mcs

10.2.3 Setting Up LMC Base Classes

LMC Base Class is also needed if you want to use Pogo. Cloning this repository is
recommended.

$ git clone https://gitlab.com/ska-telescope/lmc-base-classes
$ cd lmc-base-classes

10.3 Docker Commands

Here are a few docker commands that are useful for developers.

Each component of the Mid.CBF MCS runs in a separate Docker container, which are all created

at run-time.

To test a few docker commands, first go back to Mid-CBF-MCS directory

$ cd mid-cbf-mcs

To build the image, issue command:

$ make build

To confirm the image is build:

$ docker image ls

To run the docker image:

https://gitlab.com/ska-telescope/lmc-base-classes

Page 84 of 102
 Revision: 1C

SKA1 Mid.CBF Master Control Software Design Report

$ make up

To see the running containers:

$ docker ps

You can view all the containers including exited onces by running

$ docker ps -a

At this stage all the devices should be running. You can follow the JIVE guide to further inspect.

It is useful to debug by looking at the logs of the containers.

$ docker logs -f <container>

To stop all the containers

$ make down

10.4 Running devices

10.4.1 Using JIVE

JIVE is a graphical user interface that visualizes the devices, servers, and executes devices’

commands. Here is the procedure to start JIVE manually:

1. From the project root directory:

$ make build

$ make up

2. Run the following command

$ docker network inspect tangonet

3. Find “midcbf-databaseds”, then copy the first part of its IPv4Address

4. Run the following command:

Page 85 of 102
 Revision: 1C

SKA1 Mid.CBF Master Control Software Design Report

$ export TANGO_HOST=<the address from step 3>:100000

5. Run JIVE:

$ jive

Note: step 2-3 can be automated by running "python configJive.py" script in the main

folder:

$ python configJIVE.py

You then have to manually copy and run the export command popped up in the terminal.

10.4.2 Running the state machine

After JIVE started, run the state machine and you will understand the system much better.

Follow the table in chapter 6 for a normal operation procedure.

To Run a device:

1. open its server, and find the device with the gear button as in figure 10-1.

2. Right click the device, and select test device

3. You will see a list of commands and attributes. Run certain commands to trigger state change.

Page 86 of 102
 Revision: 1C

SKA1 Mid.CBF Master Control Software Design Report

Figure 10-1 Jive GUI start device

Note: Some commands and attributes shown on Jive are there because the device inherited from

base class. They are not meaningful commands for the device so don’t use them. All the useful

commands and attributes are described in chapter 7 of this document.

10.4.2.1 Device Relationships

To test the state machine on Jive, the most important devices are CbfSubarray and CbfMaster. In

short, the Master controls the power status of all the devices, and the Subarray processes all the

operations and send instructions to all other devices.

10.4.2.2 Configure scan

ConfigureScan is a special command for Mid-CBF-MCS, you need a valid JSON string to pass

into Jive. Furthermore, the input in Jive needs “\” before each quotation mark. Normal JSON file

wouldn’t work.

To solve this probelm, there are three options:

1. Use a script to generate this specific input.

Put your JSON file in tangods/CbfSubarray/JIVEconfigscan/scanconfig.JSON.

Run :

Page 87 of 102
 Revision: 1C

SKA1 Mid.CBF Master Control Software Design Report

$ Python generateJIVE.py

2. Use the sendConfig device to trigger configure scan with the subarray: put configuration

JSON in tangods/CbfSubarray/sendConfig/config.JSON

3. Manually insert “\” before each quotation mark (not recommended...)

10.5 Development

10.5.1 Branching with Git

Follow the guidelines here: https://developer.skatelescope.org/en/latest/tools/git.html

Some simple instructions:

Create a new branch

Git checkout master

Git checkout –b <branch name>

Push this branch to remote. Here remote is often origin. Branch name is the new branch that you

just created.

Git push <remote> <branch name>

Set up upstream tracking branch

Git branch –u orgin/<branch name>

Checkout all the branches and their tracking branch

Git branch -vv

https://developer.skatelescope.org/en/latest/tools/git.html

Page 88 of 102
 Revision: 1C

SKA1 Mid.CBF Master Control Software Design Report

10.5.2 Using Pogo

Pogo is used to automatically generate TANGO commands, attributes and properties. The pogo
file contains a device’s information, and can automatically generate corresponding python files
for you. However, the pogo files for Mid-CBF-MCS does not reflect current device attributes,
commands and properties.
To run pogo, go to the device directory and find the .xmi file in the pogo folder. Here are some
advices and observations for Pogo:

- if running “pogo xx.xmi” gives error, then find the corresponding .xmi file in the LMC
base class folder

- Pogo can generate a skeleton python file, which includes importing, device properties,
and methods. In this project, not all device properties/attributes/commands are
generated by pogo, so these attributes wouldn’t show on the pogo GUI when you run it.

- Pogo will overwrite the original python files, that it why it is kept in another folder. You
can generate a new attribute, copy the part of the python code generated, and paste into
the file you want.

- In the code you will see “#protected regions”, these are the regions that pogo won’t
overwrite

- pogo imports pytango instead of tango in the generated .py files

10.5.3 Understanding python files for Tango devices

10.5.3.1 Init_device:

- Analogous to the “__init__” function in python. You should start here to analyze the code.

- Define your own internal attributes here, to be used in TANGO attributes’ methods later

Note: The new scheme for LMC base class 0.6.0 moves “init_device” to “class InitCommand”.

Currently only CbfSubarray is implemented with the new scheme.

10.5.3.2 Device properties

- Can be generated by pogo

- Can be manually changed. You need to know the format from pogo generated code.

- Has to be set in the config file: “/data/midcbf_dsconfig.json”, or give a default value

10.5.3.3 Attribute

- Can be generated by pogo

- Access: define read or write authority

Page 89 of 102
 Revision: 1C

SKA1 Mid.CBF Master Control Software Design Report

- Label: define how it appears in JIVE

- The Attributes method function is used to define what happens if the client read or write the
attribute. The code can be generated by pogo. For example, if you have “receptorID” in the
attribute part, and it is readable, then “read_receptorID” will be its attribute method function
name.

10.5.4 Sphinx

Sphinx is used to generate documentation from comments inside the python code, to be posted

on ReadTheDoc(https://developer.skatelescope.org/projects/mid-cbf-

mcs/en/latest/?badge=latest)

Sphinx is already set up for this repository. However, if you are curious to learn, here are some

resources:

Documentation: https://www.sphinx-doc.org/en/master/usage/quickstart.html

Pay attention to:
- The config.py file: included library, extensions, etc
- Index.rst is the main file to write
- In the .rst files, have an empty line after :xx:, otherwise gives error

10.5.5 Understanding LMC Base Class 0.6.0

CbfSubarray is updated to the new Scheme for LMC 0.6.0, all the other devices are still using the

old scheme.

Helpful links to read about the steps to update to the new scheme:

https://confluence.skatelescope.org/display/SE/Updating+to+lmc-base-classes+0.6.x

https://gitlab.com/ska-telescope/lmc-base-classes

10.5.5.1 Summary of changes

If the new scheme is used, like the CbfSubarray device, then:
- In the do hook for a command class, “self” becomes “self.target”
- State change is managed by the base class. There is no need to write code to trigger

state change anymore. It will be triggered automatically if you are in the correct state and
call the correct command.

- There is still a way to force the state change: “self.state_model._set_obs_state(xxx)”.
But be careful with this command, it seems that the device has to be called in the correct
state to make the state change.

- To read the current observing state: “Self.state_model._obs_state”

10.5.5.2 Creating a new Command Class:

10.5.5.2.1 New command with the same name

https://developer.skatelescope.org/projects/mid-cbf-mcs/en/latest/?badge=latest
https://developer.skatelescope.org/projects/mid-cbf-mcs/en/latest/?badge=latest
https://www.sphinx-doc.org/en/master/usage/quickstart.html
https://confluence.skatelescope.org/display/SE/Updating+to+lmc-base-classes+0.6.x
https://gitlab.com/ska-telescope/lmc-base-classes

Page 90 of 102
 Revision: 1C

SKA1 Mid.CBF Master Control Software Design Report

Normally, if the command name is the same as the base class command name, then just inherit

from the base command, and implement the do() hook. Be careful if you want to call super().do()

or not. I suggest go to the base class and investigate what do() hook does. Most of the time

super().do() is not useful. Sometimes it causes problems because the base class SKASubarray

implements a resource manager, while Mid-Cbf-MCS doesn’t.

Figure 10-2 Creating a new command with the same name as in the LMC base class

10.5.5.2.2 New Class with different names

However, Mid-Cbf-MCS has several commands with different names from the command names

from the ADR-8

diagram(https://confluence.skatelescope.org/pages/viewpage.action?pageId=105416556)

This is also described in chapter 6 of this document describing subarray operational states.

In this case, in order to implement a different name, you need to:

1. Create a command class

https://confluence.skatelescope.org/pages/viewpage.action?pageId=105416556

Page 91 of 102
 Revision: 1C

SKA1 Mid.CBF Master Control Software Design Report

Figure 10-3 Creating a New Command Class

2. Register the command class in “init_command_objects”.

Figure 10-4 Registering the command class in “init_command_objects”

3. Call the command. Remember to set dtype_out, since it will return the result message with the

new base class scheme.

Page 92 of 102
 Revision: 1C

SKA1 Mid.CBF Master Control Software Design Report

Figure 10-5 Get the command class object in functions

10.6 Publishing image

10.6.1 Change version number

To publish the image, first change the image version in the “.release” file.

You have to change the version number and release number.

10.6.2 Publish the image

Then push the code onto Gitlab, wait for the CI to finish. On the status bar, there will be an

option to publish image. It is indicated as manual work. Click it to publish.

Alternative way: publishing the image from terminal:

Tag the image for the version:

git tag –a <midcbf-prototype-0.4.1>

Remove the lastest image to be safe:

docker image ls

docker image rm –f <name of the latest image>

build the image:

make build

you will see in the build message: mid-cbf-mcs:<version-number>-<git ash>

Check to make sure the version is correct.

Page 93 of 102
 Revision: 1C

SKA1 Mid.CBF Master Control Software Design Report

Then login to nexus and push:

$ docker login --username ci-cd nexus.engageska-portugal.pt

It will ask you for password, please ask the system team on slack for it.

Finally push the image:

$ docker push nexus.engageska-portugal.pt/ska-docker/mid-cbf-mcs:0.4.2-a67a9cb

10.7 Updating SKA MPI

Integration test is done by the NCRA team. The following is an example of the updates needed in
SKAMPI when the new image is released. You should check with the NCRA team again before doing so.

10.7.1 Configuration JSON

This is an example file that needs to be updated if there is change for any device specific configuration
or if any new device is added/deleted.

https://gitlab.com/ska-telescope/skampi/-/blob/ss-41_multiscan/charts/skampi/charts/cbf-

proto/data/midcbfconfig.json

10.7.2 Image version

This is an example file including the image version for Mid-CBF-MCS. You should change it

after pushing the new image onto the SKA server.

https://gitlab.com/ska-telescope/skampi/-/blob/ss-41_multiscan/charts/skampi/charts/cbf-

proto/values.yaml.

10.7.3 The test cases

This is an example folder where you should update the test cases. The three subfolders

acceptance, bugs and smoke need to be updated if there are any specific changes in Mid-CBF,

for example: there is a change in CBF device attribute name and that attribute is used in the test

cases.

https://gitlab.com/ska-telescope/skampi/-/tree/ss-41_multiscan/post-deployment/tests

https://gitlab.com/ska-telescope/skampi/-/blob/ss-41_multiscan/charts/skampi/charts/cbf-proto/data/midcbfconfig.json
https://gitlab.com/ska-telescope/skampi/-/blob/ss-41_multiscan/charts/skampi/charts/cbf-proto/data/midcbfconfig.json
https://gitlab.com/ska-telescope/skampi/-/blob/ss-41_multiscan/charts/skampi/charts/cbf-proto/values.yaml
https://gitlab.com/ska-telescope/skampi/-/blob/ss-41_multiscan/charts/skampi/charts/cbf-proto/values.yaml
https://gitlab.com/ska-telescope/skampi/-/tree/ss-41_multiscan/post-deployment/tests

Page 94 of 102
 Revision: 1C

SKA1 Mid.CBF Master Control Software Design Report

10.8 Interacting with devices in Linux shell

The following is an example on how to act like a client without using a GUI. By running the

following command as an example, we are acting like a TANGO client.

$ Make interactive

$ Python

$ Import tango

$ proxy=tango.DeviceProxy(“mid_csp_cbf/sub_elt/subarray_01”)

$ proxy.healthState

$ proxy.state()

$ proxy.On()

$ proxy.AddReceptors([1,2])

$ proxy.receptors

$ proxy.state()

10.9 Studying Configuration Files

This section describes some important configuration files in the repository.

10.9.1 Makefile:

Make file links all other configuration files together. It specifies instructions like make up/make
down/make test. Make file calls docker compose, which read .yml files

10.9.2 Other Files:

“Tango.yml”:
Creates containers for Tangodb. Tango images are provided by the system team.

“Mid-cbf-mcs.yml”:

 Create containers for midcbf project
 Image created by make build
 Contains command to activate each container,

for example: python ../../VccMulti.py vcc001
 Calls midcbf_dsconfig.json to configure tango database

Page 95 of 102
 Revision: 1C

SKA1 Mid.CBF Master Control Software Design Report

“Midcbf_dsconfig”:
 This file is in “./tangods/data”
 It is used for configuring the tango database. It contains the TANGO property information

for each tango device.

“Dockerfile”:

 Images by the system team to create environment for the project

10.9.2.1 Adding a new device for Mid-CBF-MCS

To do that you have to change both “midcbfmcs.yml” to start container and “dsconfig.JSON” to
configure TANGO property, as mentioned above.

Page 96 of 102
 Revision: 1C

SKA1 Mid.CBF Master Control Software Design Report

11 IP Libraries and Library Management

This chapter is not applicable to the Mid.CBF MCS; no 3rd party IP is used.

Page 97 of 102
 Revision: 1C

SKA1 Mid.CBF Master Control Software Design Report

12 Software Variations and Management

This chapter is not applicable to the Mid.CBF MCS; only one variation of this software exists.

Page 98 of 102
 Revision: 1C

SKA1 Mid.CBF Master Control Software Design Report

13 Test Plan

The Mid.CBF MCS was developed as part of the MVP, the end goal of the Evolutionary

Prototype for Program Increment #3. As such, this software is not at the point of maturity to

justify creating a test plan for pre-production and production.

13.1 Development Test Plan

All testing during development is automated. The different components of the Mid.CBF MCS

are unit tested in isolation where possible. Integration tests between the components are

necessary to test message flow and state transitions during sequences such as scan configuration

or resource allocation.

A TANGO Device is present to simulate TMC and SDP functionality. This device is able to

provide delay model updates.

13.2 Prototype Test Plan

The Mid.CBF MCS interfaces with the CSP.LMC, TMC, and SDP. System integration testing of

these components is largely manual for the MVP. In the future, this will be fully automated.

13.3 New Product Introduction Test Plan

No consideration has been given to testing pre-production software.

13.4 Full Production Test Plan

No consideration has been given to testing production software.

Page 99 of 102
 Revision: 1C

SKA1 Mid.CBF Master Control Software Design Report

14 Appendix I: Discrepancies From Design At CSP CDR

The following are discrepancies of the Mid.CBF MCS from the original design of the CSP

presented at Critical Design Review (refer to AD1 and AD2).

1. TMC no longer accesses CSP Master to assign and release resources on a particular sub-array’s
behalf. Instead, TMC accesses the CSP Subarray directly to do so. This behavior has been
extended to the CSP to Mid.CBF interface; CSP.LMC accesses the Mid.CBF Subarray directly to
assign and release resources.

2. The receptor list has been omitted from the set of scan configuration parameters. Receptors
must be added to a sub-array prior to configuring a scan, when the Mid.CBF Subarray is in
observing state IDLE.

3. Scan ID and frequency band are now required in the set of scan configuration parameters (were
previously optional and memorized).

4. A boolean value to enable transient data capture is now required in the set of search window
parameters (was previously optional and defaulted to false). Additionally, destination addresses
for transient data are now also required if transient data capture is enabled. This is to facilitate a
timestamp, instead of a set of addresses, as the input argument to a call to
offloadTransientDataCapture (not implemented for the MVP).

5. The CSP TelState device is no longer present nor required. Attributes that were previously
exposed on CSP TelState are now exposed directly on CSP Subarray.

Page 100 of 102
 Revision: 1C

SKA1 Mid.CBF Master Control Software Design Report

15 Appendix II: JSON Examples

This appendix contains examples of JSON objects that are relevant to configuring and executing

a scan.

15.1 Scan Configuration

This section provides an example for a JSON script passed via the command Configure().

The example defined the subarray configuration as follows:

 Band 1 observation.

 Use FSP #4 to correlate a Frequency Slice #1.

 Correlate the full FS bandwidth (200 MHz); correlated bandwidth is calculated as:

200MHz / 20 (in the script the correlated bandwidth is specified as zero).

 Integration time is 140 miliseconds (integrate output products for 140 milliseconfs before
transmiting to SDP).

 The offset for the channel IDs inserted in the output products is zero, meaning that the
ChannelID generated by FSP #4 are in range [0 .. 14788].

 The channel averaging factor is specified per group of 744 channels produced on the same
FPGA, in this example the maximum averaging factor (8) is specified for the first group of 744
channels (channels 0 to 743). The averaging factor of zero for other groups means ‘do not
transmit’; meaning that only the channels 0 to 743, averaged by factor of 8, will be transmitted
to SDP.

 The output link map is specified so that channels 0 to 399 are transmitted to SDP via the output
link #1 and channels with the Channel ID 400 and up via the link #2.

Note:

1. The receptors are assigned to a subarray in advance of the scan configuration, using the
command AssignReceptors(). Optionally a user can specify a subset of receptors to be correlated
(not provided in this example).

2. Scan ID is passed by the command StartScan().

Page 101 of 102
 Revision: 1C

SKA1 Mid.CBF Master Control Software Design Report

{
 "id”: “Simple Band1 example, correlation, one FS”,
 "frequencyBand": "1",
 "fsp": [
 {
 "fspID": 4,
 "functionMode": "CORR",
 "frequencySliceID": 1,
 "corrBandwidth": 0,

 "integrationTime": 140，

 "fspChannelOffset": 0，
 "channelAveragingMap": [
 [1, 8],
 [745, 0],
 [1489, 0],
 [2233, 0],
 [2977, 0],
 [3721, 0],
 [4465, 0],
 [5209, 0],
 [5953, 0],
 [6697, 0],
 [7441, 0],
 [8185, 0],
 [8929, 0],
 [9673, 0],
 [10417, 0],
 [11161, 0],
 [11905, 0],
 [12649, 0],
 [13393, 0],
 [14137, 0],
],
 “outputLinkMap”: [
 [0,1],
 [400,2],
],
 “outputHost”: [[0,”192.168.0.1”],[400, “192.168.0.2]],
 “outputPort”: [[0, 9000, 1], [400, 9000,1]]
 }
]
}

Page 102 of 102
 Revision: 1C

SKA1 Mid.CBF Master Control Software Design Report

15.2 Delay Models

The following JSON object is an example of a delay model, published to the subscription point

given in scan configuration, that can be updated at any time after a successful scan configuration

and during a scan.
{
 "delayModel": [
 {
 "epoch": "0",
 "delayDetails": [
 {
 "receptor": 1,
 "receptorDelayDetails": [
 {
 "fsid": 1,
 "delayCoeff": [0.4, 1.2, 2.1, 3.4, 4.7, 5.0]
 },
 {
 "fsid": 2,
 "delayCoeff": [0.4, 1.2, 2.1, 3.4, 4.7, 5.0]
 }
]
 },
 {
 "receptor": 2,
 "receptorDelayDetails": [
 {
 "fsid": 1,
 "delayCoeff": [0.4, 1.2, 2.1, 3.4, 4.7, 5.0]
 },
 {
 "fsid": 2,
 "delayCoeff": [0.4, 1.2, 2.1, 3.4, 4.7, 5.0]
 }
]
 }
]
 }
]
}

