
System Demo 7.5
NZAPP

SPO-664 Deliver prototype visibility receive metrics pipeline suitable for eventual 
integration into SKAMPI

SP-1001 RT visibility receive signal display developed and integrated into the SDP 
prototype (including stretch goals)



Metric Display Architecture
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Metric Generator

• Some of the SKA1 data rates requiring monitoring are very high

• Can’t realistically push all raw data to database for metrics so one role of metric 
generator is to aggregate data before persisting
• Allow metric generator to be configurable so can tune the frequency of metrics generated to 

control data volumes and which data of particular interest
• Allow multiple metrics to be generated (eg output metrics for a particular baseline at higher rate 

or for particular channels at greater resolution while still generating broader metrics at lower rate)

• For SP-1001 in PI#7
• Have preferred to push metrics (rather than have them pulled) so each metric generator doesn’t 

have complication of buffering metrics/providing service
• Have created metric_generator.py (https://gitlab.com/ska-telescope/cbf-sdp-emulator-metrics-

generator) which can run stand alone or integrated with CBF-SDP Emulator (with both single and 
multithreaded emulation) (https://gitlab.com/ska-telescope/cbf-sdp-emulator)

• Have added metric generator RDMAmetrics.c (https://gitlab.com/ska-telescope/rdma-data-
transport) to monitor sending and/or receiving of RDMA messages, including status of all memory 
regions

https://gitlab.com/ska-telescope/cbf-sdp-emulator-metrics-generator
https://gitlab.com/ska-telescope/cbf-sdp-emulator
https://gitlab.com/ska-telescope/rdma-data-transport


Time Series Database

• A time series database seems the most suitable choice for persisting 
metrics

• Many choices available:
• InfluxDB free for non-clustered usage, MIT licence, written in Go, supports HTTP 

push
• Prometheus free, Apache licence, written in Go, uses HTTP pull
• kdb+ commercial, written in Q
• Graphite (formerly Whisper) free, Apache licence, written in Python

• For SP-1001 in PI#7
• Selected InfluxDB
• Advantages: popular, free (non-clustered version), good support for receiving pushed 

metrics via HTTP, compatible with assortment of visualisation tools
• Disadvantages: bulky (in my opinion) text-based format for metrics, not free in 

clustered version (if over 750k writes/sec or over 100 queries/sec)



Visualisation Tool

• Three visualisation options considered
• Use a popular time-series visualisation solution such as Grafana or Kibana
• Use a client-side JavaScript library for drawing graphs, such as ChartJS, Metric-

Graphics, Recharts, C3js, React-vis, Metabase, Plotly (note some of these can be used 
inside a visualisation solution, such as Poltly inside Grafana)

• Use or adapt custom code, likely custom JavaScript within a browser, such as done by 
MeerKAT signal displays (https://github.com/ska-
sa/katsdpdisp/blob/master/katsdpdisp/html/figure.js#L475) to produce graphs 
closest to legacy observatory monitoring implementations

• For SP-1001 in PI#7
• Selected simplest solution using Grafana
• If found to not be suitable then will have to move to other options (more 

customisable displays but also much more effort)

https://github.com/ska-sa/katsdpdisp/blob/master/katsdpdisp/html/figure.js#L475


Visibility Metric Generator

• cbf-sdp-emulator-metrics-generator pushes multiple 
metrics to InfluxDB-Grafana for:
• Stand alone using GLEAM datasets
• csp-sdp-emulator in single threaded config as a consumer
• csp-sdp-emulator in multithreaded config as a consumer 

(special thanks to Seth and Adam for integrating this 
already!)

• Each metric can independently:
• Filter (select) specified polarisations and baselines
• Aggregate across any number of specified channel

intervals
• Aggregate across specified number of time increments
• Operate on visibility real, imaginary, amplitude, phase
• Perform operations mean, max, min, variance

• Has exposed some limitations of python for generating 
metrics
• Task was not suitable for NumPy
• Easy to lose SPEAD heaps
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RDMA Metric Generator

• RDMA receiver also pushes data to InfluxDB-Grafana
• Gives a way to stress-test the InfluxDB-Grafana solution
• Provides NIC queue utilisation, CPU utilisation, network bandwidth, messages 

transferred and missing, and snapshot of current status of every memory region
• Hundreds of fields output each push
• Have tested pushing dozens of times/sec so far, with Grafana pulling up to 10 

times/sec

• Uses C libcurl package for posting metrics to InfluxDB
• Found that the thread coordinating the RDMA message transfers needs to

focus on its task to achieve 100G rates otherwise packet loss increases
• Regardless of RDMA this give alarm bells about using a solution for receiving 

visibilities that may introduce jitter (eg garbage collection, OS interrupts)
• 300k messages at 100G can loop through all memory buffers in ≈1ms, so jitter should 

be kept under few 100μs (rough guideline only)
• HTTP now performed in separate threads
• RDMA with separate HTTP threads working fine in this C implementation on 

commodity Ubuntu



Demonstrations

• Visibility Metric Generator standalone with GLEAM large dataset (four 
channels) pushing two metrics
• Mean amplitude and mean phase

• Visibility Metric Generator with csp-sdp-emulator in multithreaded 
configuration (10 receivers) pushing single metric (to avoid overburdening 
emulator)
• Mean amplitude with 50000 channels aggregated into intervals 5000 wide

• Note the multithreaded emulator provides heaps with constant 0.5+0i visibilities

• RDMA Metric Generator
• Pushing data live from actual CIPA FPGA at sustained 98G, with metrics pushed 

across internet to a dedicated InfluxDB-Grafana thick-provisioned storage server


