
System Demo 7.5
NZAPP

SPO-664 Deliver prototype visibility receive metrics pipeline suitable for eventual 
integration into SKAMPI

SP-1001 RT visibility receive signal display developed and integrated into the SDP 
prototype (including stretch goals)



Metric Display Architecture

Metric 
Generator

Time Series 
Database

Visualisation 
Tool

Loosely coupled strawman architecture chosen for PI#7 work on SP-1001

Metrics 
pushed by 
generator

Metrics 
pulled by 
visualisation



Metric Generator

• Some of the SKA1 data rates requiring monitoring are very high

• Can’t realistically push all raw data to database for metrics so one role of metric 
generator is to aggregate data before persisting
• Allow metric generator to be configurable so can tune the frequency of metrics generated to 

control data volumes and which data of particular interest
• Allow multiple metrics to be generated (eg output metrics for a particular baseline at higher rate 

or for particular channels at greater resolution while still generating broader metrics at lower rate)

• For SP-1001 in PI#7
• Have preferred to push metrics (rather than have them pulled) so each metric generator doesn’t 

have complication of buffering metrics/providing service
• Have created metric_generator.py (https://gitlab.com/ska-telescope/cbf-sdp-emulator-metrics-

generator) which can run stand alone or integrated with CBF-SDP Emulator (with both single and 
multithreaded emulation) (https://gitlab.com/ska-telescope/cbf-sdp-emulator)

• Have added metric generator RDMAmetrics.c (https://gitlab.com/ska-telescope/rdma-data-
transport) to monitor sending and/or receiving of RDMA messages, including status of all memory 
regions

https://gitlab.com/ska-telescope/cbf-sdp-emulator-metrics-generator
https://gitlab.com/ska-telescope/cbf-sdp-emulator
https://gitlab.com/ska-telescope/rdma-data-transport


Time Series Database

• A time series database seems the most suitable choice for persisting 
metrics

• Many choices available:
• InfluxDB free for non-clustered usage, MIT licence, written in Go, supports HTTP 

push
• Prometheus free, Apache licence, written in Go, uses HTTP pull
• kdb+ commercial, written in Q
• Graphite (formerly Whisper) free, Apache licence, written in Python

• For SP-1001 in PI#7
• Selected InfluxDB
• Advantages: popular, free (non-clustered version), good support for receiving pushed 

metrics via HTTP, compatible with assortment of visualisation tools
• Disadvantages: bulky (in my opinion) text-based format for metrics, not free in 

clustered version (if over 750k writes/sec or over 100 queries/sec)



Visualisation Tool

• Three visualisation options considered
• Use a popular time-series visualisation solution such as Grafana or Kibana
• Use a client-side JavaScript library for drawing graphs, such as ChartJS, Metric-

Graphics, Recharts, C3js, React-vis, Metabase, Plotly (note some of these can be used 
inside a visualisation solution, such as Poltly inside Grafana)

• Use or adapt custom code, likely custom JavaScript within a browser, such as done by 
MeerKAT signal displays (https://github.com/ska-
sa/katsdpdisp/blob/master/katsdpdisp/html/figure.js#L475) to produce graphs 
closest to legacy observatory monitoring implementations

• For SP-1001 in PI#7
• Selected simplest solution using Grafana
• If found to not be suitable then will have to move to other options (more 

customisable displays but also much more effort)

https://github.com/ska-sa/katsdpdisp/blob/master/katsdpdisp/html/figure.js#L475


Visibility Metric Generator

• cbf-sdp-emulator-metrics-generator pushes multiple 
metrics to InfluxDB-Grafana for:
• Stand alone using GLEAM datasets
• csp-sdp-emulator in single threaded config as a consumer
• csp-sdp-emulator in multithreaded config as a consumer 

(special thanks to Seth and Adam for integrating this 
already!)

• Each metric can independently:
• Filter (select) specified polarisations and baselines
• Aggregate across any number of specified channel

intervals
• Aggregate across specified number of time increments
• Operate on visibility real, imaginary, amplitude, phase
• Perform operations mean, max, min, variance

• Has exposed some limitations of python for generating 
metrics
• Task was not suitable for NumPy
• Easy to lose SPEAD heaps

Tim
e In

crem
e

n
ts

ch
an

n
e

ls

baselines



RDMA Metric Generator

• RDMA receiver also pushes data to InfluxDB-Grafana
• Gives a way to stress-test the InfluxDB-Grafana solution
• Provides NIC queue utilisation, CPU utilisation, network bandwidth, messages 

transferred and missing, and snapshot of current status of every memory region
• Hundreds of fields output each push
• Have tested pushing dozens of times/sec so far, with Grafana pulling up to 10 

times/sec

• Uses C libcurl package for posting metrics to InfluxDB
• Found that the thread coordinating the RDMA message transfers needs to

focus on its task to achieve 100G rates otherwise packet loss increases
• Regardless of RDMA this give alarm bells about using a solution for receiving 

visibilities that may introduce jitter (eg garbage collection, OS interrupts)
• 300k messages at 100G can loop through all memory buffers in ≈1ms, so jitter should 

be kept under few 100μs (rough guideline only)
• HTTP now performed in separate threads
• RDMA with separate HTTP threads working fine in this C implementation on 

commodity Ubuntu



Demonstrations

• Visibility Metric Generator standalone with GLEAM large dataset (four 
channels) pushing two metrics
• Mean amplitude and mean phase

• Visibility Metric Generator with csp-sdp-emulator in multithreaded 
configuration (10 receivers) pushing single metric (to avoid overburdening 
emulator)
• Mean amplitude with 50000 channels aggregated into intervals 5000 wide

• Note the multithreaded emulator provides heaps with constant 0.5+0i visibilities

• RDMA Metric Generator
• Pushing data live from actual CIPA FPGA at sustained 98G, with metrics pushed 

across internet to a dedicated InfluxDB-Grafana thick-provisioned storage server


