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1 Introduction

Large radio astronomical aperture array systems usually
have a hierarchical design in which the receiving ele-
ments are grouped in subarrays, often referred to as sta-
tions, which together operate as an interferometer array.
Examples of such systems are the Low Frequency Ar-
ray (LOFAR) [1] and the low-frequency component of the
Square Kilometre Array (SKA-LOW) [2]. Such systems
require calibration at different aggregation levels to ensure
high-quality scientific data products: station level calibra-
tion is required to form station beams with sufficient quality
and stability and array level calibration is required to meet
the performance criteria for the interferometer array [3].

Antenna measurements using drones and developments in
computational electromagnetics allow us to make validated
predictions of the embedded element patterns of the indi-
vidual antennas in such large arrays [4]. In this paper, I
discuss how this knowledge may support station-level and
array-level calibration and what accuracy is required to do
so. In this discuss, I pay particular attention to the ques-
tion whether this accuracy can be achieved by using only a
single average embedded element pattern (EEP) for all an-
tennas or whether modelling of individual EEPs is required
in the context of LOFAR and SKA-LOW.

2 Station level calibration

The aim of station calibration is to keep track of electronic
drift in the individual receive paths in the station due to,
e.g., temperature variations and aging of electronic compo-
nents. This information is required to form a well-defined
beam in the desired direction. Simulations have shown that
the impact of ignoring EEP difference in the modelling of
the intra-station visibilities causes a systematic error in the
station calibration solutions that varies with sidereal time
[5]. If these calibration solutions would be fed back to
the beamforming system, the station beam would exhibit a
drift-like effect even when the station electronics would be
perfectly stable. I will refer to this as calibration drift. As

the aim of station calibration is to improve system perfor-
mance, calibration drift should be less than electronic drift,
at least when direct feedback of station calibration solutions
to the beamforming system is being considered. The com-
bination electronic drift and calibration drift gives rise to
decorrelation in the station beamformer and to drift of the
station beam(s) formed. Below, I provide derivations that
can be used to set requirements such that these detrimental
effects remain within acceptable limits.

The excitation of the individual elements of the array in re-
sponse to a plane wave impinging on the array at a given
frequency can be represented by a phasor, whose phase de-
scribed the geometrical delay of the wave across the array
w.r.t. a common reference point. If the beamformer works
perfectly, all these phasors are aligned parallel before addi-
tion thereby maximising the amplitude of the resultant vec-
tor in the complex plane. Based on this argument, it is easily
seen that a RMS phase error σϕ will result in a vector that is
only a fraction cos(σϕ) of the length achievable by perfect
addition. In the power domain, the beamformer efficiency
given RMS phase errors σϕ is therefore

ηBF = cos2(σϕ)≈ 1−σ
2
ϕ , (1)

where the approximation proposed by John Ruze [6], holds
if σϕ is expressed in radians. This implies that a beam-
former efficiency of 99% requires σϕ ≤ 5.7◦ while a beam-
former efficiency of 98% requires σϕ ≤ 8.1◦.

Although Eq. (1) is insightful, it does not set a limit on
the inter-element amplitude variations. For this, we need
to consider the output SNR of the beamformer,

SNRBF =
wHRsw
wHRnw

, (2)

where w is the vector with beamformer weights and Rs and
Rn are the array covariance matrices for the signal and noise
respectively [7]. Assuming a source of unit power in the
phase center (Rs = 11H , where 1 denotes a vector filled with
ones) and elements with unit noise power (R = I, where I
denotes the identity matrix), Eq. (2) simplifies to

SNRBF =
wH11Hw

wHIw
=

∣∣wH1
∣∣2

wHw
. (3)

This equation can be used to compare the output SNR of
the beamformer for various error distributions against the



output SNR of an error-free beamformer. As an example, I
will assume beamformer weights with zero-mean Gaussian
noise with standard deviation ε , N (0,ε), on its real and
imaginary parts, i.e., wp = 1+Np(0,ε)+ jNp(0,ε), where
p denotes the element index. This gives

SNRBF =

∣∣∑p 1+Np(0,ε)− jNp(0,ε)
∣∣2

∑p 1+2Np(0,ε)+2
∣∣Np(0,ε)

∣∣2 . (4)

Since the errors are assumed to have zero mean, the linear
error terms will cancel if the number of elements in the ar-
ray, P, is sufficiently large. In the same limit, the quadratic
term in the denominator will converge to 2Pε2. Taking into
account that the ideal beamformer would have an SNR of
P, the beamformer efficiency in this example becomes

ηBF =
SNRBF

P
=

1
1+2ε2 ≈ 1−2ε

2, (5)

where the approximation for small errors is based on the
Taylor series of 1/(1+ x). This result implies that a beam-
former efficiency of 99% requires ε ≤ 7.1% while a beam-
former efficiency of 98% requires ε ≤ 10%.

In theory, the station beams can be predicted based on a pri-
ori information like station beam weights, operational an-
tennas and their EEPs. In practice, this prediction will not
be perfect and array level calibration will have to handle de-
viations between the actual station beams and the predicted
station beams. If this deviation is constant, long calibration
intervals can be used in direction-dependent calibration to
estimate this deviation very accurately. This task becomes
more challenging when this deviation is varying with time.
This issue can be analysed by considering the contribution
of visibility Vi j to the imaging of a source with flux S at
some point in the field-of-view towards which the stations
involved have gains gi and g j when this contribution is in-
tegrated over the calibration interval tau:

Vi j =
1
τ

∫
τ/2

−τ/2

gi

g0i

g j

g0 j
Sdt, (6)

where g0i and g0 j are the calibration corrections applied.

Initially, the changes in the direction-dependent gains gi
and g j will, to first order, be linear. Assuming that the cali-
bration routine perfectly estimates the average value of the
gains over the calibration interval, we can describe gi as
gi = g0i +αit. The visibility is then described by

Vi j =
1
τ

∫
τ/2

−τ/2

g0i +αit
g0i

g0 j +α jt
g0 j

Sdt. (7)

Performing the integration gives

Vi j = S+
1

12
αi

g0i

α j

g0 j
τ

2S = S+∆S. (8)

If the bias due to drift of the station beam is uncorrelated be-
tween visibilities, drift effectively acts like another source
of noise that we would like to keep below the thermal noise
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Figure 1. Local relative station beam gain variations along
the cross-section through the main beam with largest vari-
ability as function of time since 22 August 2018, 0:00:00
UTC.

in the image. Keeping it below 20% of the thermal noise
implies that

|∆S|
S
≤ 1

5
SEFD/

√
Bτ

S
=

1
5

1
SNR

, (9)

where SEFD refers to the Source Equivalent Flux Density
of the system and SNR is the SNR of the source with flux S
used for direction-dependent calibration.

Assuming that the drift rates follow a random distribution
with RMS magnitude α and the true gains are nominally
identical with magnitude g0, Eq. (9) can be written as

1
12

α2

g2
0

τ
2 ≤ 1

5
1

SNR
, (10)

which implies a limit on the rate of change of the relative
error on the directional response of the stations of

α

g0
≤
√

12
5

1√
SNR

1
τ
=

√
12
5

√
SEFD
S
√

Bτ

1
τ
. (11)

Calibration intervals are usually chosen such that the SNR
towards the (clusters of) calibration sources is at least 5
to 10. To find a conservative estimate, I will assume an
SNR of 10. In LOFAR, common solution intervals for
calibration of direction-dependent instrumental effects are
5 to 10 minutes. To find a conservative estimate, I will
assume 10 minutes, i.e., τ = 600 s. These values give
α/g0 ≤ 0.082 %/s. For SKA-LOW, the allowed rate of
change will be higher owing to its higher sensitivity. The
lower SEFD implies that a shorter integration time is suf-
ficient to perform direction-dependent calibration with the
same density of directions and SNR. This relaxes the re-
quirement, i.e., direction-dependent calibration is able to
keep up with faster changing station beams.

The impact of ignoring EEP differences between antennas
was assessed in simulation for a SKA-LOW station con-
sisting of SKALA4AL antennas located at the AAVS site
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Figure 2. Rate of change of the local relative station beam
gain variations sow in Fig. 1.

(-27.6◦ S, 116.7◦ E). Mock visibility data were created at
110 MHz based on the Haslam map [8] and EEPs from an
EM-simulation validated by drone measurements [9]. For
calibration, model visibilities were created based on the
Haslam map assuming an identical EEP for all elements
equal to te average EEP from the EM-simulation. Calibra-
tion was performed for 200 instances in time spread over
24 hours starting at 22 August 2018 at 0:00:00 UTC. The
estimated gains were applied to classical delay beamformer
weights to calculate a station beam for each of the 200 in-
stances. Fig. 1 shows the local relative station beam gain
variations for a number of points sampling the cross-cut
through the station main beam where the highest variabil-
ity was found. By taking the difference between the station
beam gain predictions for consecutive time instances, an es-
timate was calculated for the rate of change of the relative
error. The result is shown in Fig. 2.

These results indicate that, although ignoring EEP differ-
ences in station calibration results in a bias, the rate of
change of this bias is slow enough that continuous re-
calibration of.a station during an observation will not re-
sults in station beam variations at a rate of change that
direction-dependent calibration at array level will not be
able to deal with. Also, even at the most unfavourable in-
stance in time, the RMS phase variation induced by this
bias on the gain solutions for the individual receive paths
within a station is expected to be less than 4◦. This only
causes 0.5% decorrelation in the station beamformer, which
is well within the allowed budget for beamforming errors.
We may thus conclude that a priori knowledge of an average
EEP is sufficient for station calibration. In both simulation
and experiments with LOFAR and the AAVS prototype sta-
tion, we found, however, that errors in the currently used
source model may cause an even larger bias than ignoring
EEP variations. This needs to be validated carefully before
opting for continuous re-calibration of the station during an
observation.

3 Array level calibration

Direction-dependent calibration is a pre-requisite for
high-dynamic range imaging [10]. LOFAR Epoch-of-
Reionization observations and, to a lesser extend, LOFAR
survey observations therefore perform direction dependent
calibration in ∼10 to even ∼ 100 directions [11, 12].
Direction-dependent calibration in LOFAR does not only
provide ionospheric corrections, but corrections for dis-
crepancies between the station beam model and the actual
station beam. As the station beam shape is mainly deter-
mined by the array factor, an inaccurate model of the EEPs
of the antennas within a station is usually not a major issue
if direction-dependent calibration is applied.

The EEPs play a far more important role in flux calibra-
tion. For flux calibration, the telescope is pointed at a flux
calibrator to establish the telescope gain shortly before or
after the observation of the target field [12]. Unfortunately,
the telescope gain of an aperture array varies significantly
with pointing direction, mainly due to the (average) EEP
and projection effects. As a result, the telescope gain to-
wards the flux calibrator and towards the target field, which
may be separated by∼100◦ on the sky, may differ consider-
ably and this needs to be taken into account during flux cal-
ibration transfer from the calibrator to the target field. This
issue has been discussed extensively in the LOFAR project
as plans are being made towards its upgrade to LOFAR
2.0. Considering that the absolute flux scale at 150 MHz
is about 5% uncertain (Reinout van Weeren, private com-
munication). To ensure that flux calibration transfer does
not add significantly to this, the System Requirements for
LOFAR 2.0 now specify that "LOFAR 2.0 shall provide a
flux calibration of sources with a reproducibility of less than
2% independent of the sky position above an elevation fo 10
degrees."

To meet this reproducibility target, we need to know the
overall gain of the station in a given direction, i.e., the sum
of all individual EEPs after phasing up towards the direction
of interest, across the sky within 1.4% assuming that the er-
rors towards the calibrator and towards the target field are
unrelated and may therefore be added quadratically. Since
calculation of the isolated element pattern (IEP) is much
less computationally demanding than calculation fo the av-
erage EEP (aEEP), the difference between the IEP and the
aEEP was studied in detail for the LOFAR LBA system
[13]. The results indicate that for the relatively sparse LBA
outer configuration of the Dutch LOFAR stations, the dif-
ferences between the IEP and aEEP remain within the 1.4%
limit for boresight angles up to 60◦ at fiducial frequencies
of 32, 44, 57 and 70 MHz. For the more densely packed
LBA inner array, the situation is more complicated. At 32
MHz, the requirement is met for boresight angles up to 60◦.
At 44, 57 and 70 MHz, however, the requirement is only
met over a more restricted range of boresight angles, about
30◦, 40◦ and 25◦ at 44, 57 and 70 MHz respectively. There-
fore, a full EM simulation of an entire LOFAR station may



thus be required to achieve the desired flux calibration re-
producibility.

A similar analysis was done for an SKA-LOW station [14].
At 50 MHz, the difference between the IEP and the aEEP
reach levels of 40% within 45◦ from boresight. This war-
rants a full EM simulation. At 110 and 350 MHz, the other
two frequencies assessed in [14], the agreement between
the IEP and aEEP is much better across the boresight an-
gle range considered (up to 45◦). However, the results still
show a number of boresight angle where a similar require-
ment as for LOFAR would only be marginally satisfied with
differences at the 3% level. It thus seems necessary to cal-
culate the aEEP for the SKA-LOW stations to achieve the
desired level of flux calibration reproducibility.

4 Conclusions

In this paper, I assessed the need for accurate modelling
of individual EEPs in large, distributed aperture arrays like
LOFAR and SKA-LOW. Although using an average EEP
in station calibration causes a bias in the calibration solu-
tions, this effect in itself does not seem to pose unacceptable
degradation of system performance. However, station cali-
bration should not worsen system performance (for this rea-
son, LOFAR uses fixed station calibration tables for signif-
icant periods (few months) of time) and one should ensure
that the combination of EEP modelling errors and source
modelling errors together still gives acceptable results. For
flux calibration transfer, knowledge of the average EEP is
sufficient, but the average EEP cannot be replaced by the
isolated element pattern as that would give rise to unaccept-
ably poor flux calibration reproducibility in many scenar-
ios.
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