
SP-545:
HPS2FPGA second DeTrI interface

Dr William Kamp, High Performance Computing Research Lab, AUT, NZA

Demo of the DeTrI and RegDef systems used for
TalonDX Firmware and Software development.

Alphabet Soup

● DeTrI - Device Tree Interconnect - pronounced “Dee-Tree”.

● RegDef - JSON based register definition and code generation.

● HPS - Hard Processor System - the ARM processor on the Stratix10 FPGA

● HPS2FPGA - name of the high performance memory mapped interface from HPS to FPGA fabric.

● TalonDX - Stratix10 FPGA hardware platform developed for Mid.CBF and Dish.

https://www.maxpixel.net/Abc-Alphabet-Soup-Wood-Cube-Cube-Letters-Toys-473703

Objectives

● SPO-287
○ Progress the design and implementation of TDC on the path to AA0.5

● SPO-237
○ Provide functional software and firmware infrastructure for the TALON-DX Board

● RegisterDef
○ Single source the definition of Register Sets and their fields between FW and SW.

● DeTrI
○ Automate addresses assignment and communication of those addresses to Software.

Firmware Components

Master
(HPS)

Partition Region

Interconnect

Interconnect

Interconnect

Interconnect

Partition RegionClock Crossing

Interconnect
IP

Block
IP

Block
IP

Block

IP
Block

IP
Block

IP
Block

IP
Block

Second DeTrI Bus

LW
Master
(HPS)

Partition Region

Interconnect

Interconnect

Interconnect

Interconnect

Partition RegionClock Crossing

Interconnect
IP

Block
IP

Block
IP

Block

IP
Block

IP
Block

IP
Block

IP
Block

HP
Master
(HPS)

Partition Region

Interconnect

Interconnect

Interconnect

Interconnect

Partition RegionClock Crossing

IP
Block

RegisterDef Process

Firmware
Design
Document

Software
monitor and
control
requirements

JSON
register
description

Generated
Code and
Docs

RegisterDef

VHDL package

Software Definitions

Documentation
(pdf, HTML)

https://upload.wikimedia.org/wikipedia/commons/thumb/0/0a/Gnome-stock_person.svg/1024px-Gnome-stock_person.svg.png
https://www.flickr.com/photos/appleboy/8679381967

DeTrI Process

RegisterDef
VHDL
package

IP Block

FPGA
design.

Elaboration
DeTrI VHDL
Components

Synthesis
Report
- lists
register
blocks

DeTrI Script
Address
Table

VHDL

System
Map

FW SW Device Tree

FW

https://www.flickr.com/photos/appleboy/8679381967
https://upload.wikimedia.org/wikipedia/commons/thumb/0/0a/Gnome-stock_person.svg/1024px-Gnome-stock_person.svg.png
https://upload.wikimedia.org/wikipedia/commons/thumb/0/0a/Gnome-stock_person.svg/1024px-Gnome-stock_person.svg.png
https://upload.wikimedia.org/wikipedia/commons/thumb/0/0a/Gnome-stock_person.svg/1024px-Gnome-stock_person.svg.png

DeTrI - What and Why

Three parts:

1. FPGA Firmware components:
a. Abstract VHDL entities that build up the interconnect.

i. Register bank, RAM bridge, Interconnect, Clock domain crossing, ...
b. Concrete implementation - currently AvalonMM based, but could be AXI or Wishbone or ...

2. Address assignment Script: written in Python.
a. Extracts register instances from Synthesis Report. Packs them into the address map. Outputs them in various

formats: VHDL address table, Linux Device Tree format.

3. Automation of the automation, written in TCL.
a. Scripts to hook into the Quartus Tool.

Example: Add a field to an existing register set

1. Add field description to JSON file. (2 mins)

2. Run RegisterDef.py script on JSON file to generate VHDL code. (1 min)

3. Implement field logic in VHDL. (1 - 15 mins?)

4. Click Build and go get coffee (automation takes over.)
a. VHDL elaborated - synthesis report generated.

i. auto sized the register bank for the new field.
b. Addresses assigned to all modules

Problems solved

● Adding to the register bus is error prone. Mistakes often mean complete lockup of the register bus.
○ Use standardised components.

● Manually assigning addresses - tedious work, and error prone, doesn’t support rapid development.
○ Use automated address assignment.

● Communication of register addresses - error prone.
○ Single source the addresses.

