
PST PI3 Report 
 
This document summarizes some of the more significant work the PST team has done during 
program increment 3. The first section discusses the difference between SKA Mid and SKA Low 
PFB channelizers and their respective FIR filter coefficients. The second section discusses the 
work we’ve done towards completing feature SP-149.  

SKA Mid FIR Filter Coefficients 

Background 
 
One of the Level 1 Requirements for SKA Mid, SKA1-CSP_ASS-405, states that “When Pulsar 
Timing on SKA1_Mid, the total spurious power, integrated over all time samples greater than 
300 nanoseconds from the center of the narrowest possible impulse response function of the 
SKA1_Mid in that beam's observing Band, shall be less than -50 dB.”  
 
We put together a testing pipeline, written in Matlab, that attempts to determine if the novel FFT 
based PFB inversion algorithm used in the PST is capable of meeting this specification. With this 
pipeline we do the following: 
 

- Generate a single channel,  non dispersed, single bin impulse. The position of this 
impulse is parameterized.  

- Channelize the impulse using an implementation of the Polyphase Filterbank algorithm, 
producing the number of channels supported by the FIR filter coefficients supplied to the 
PFB. 

- Synthesize the channelized impulse using FFT based PFB inversion. This includes 
applying a Tukey FFT window on fine channels, in addition to appropriately rewinding 
through input data as the algorithm processes computational blocks.  

- Compute purity metrics, namely the maximum spurious power and the total spurious 
power. Here, spurious power refers to any power found outside the 300 nanosecond 
region on either side of the original impulse position. If the FFT based PFB inversion 
algorithm were to perfectly reconstruct the original impulse, both these metrics would be 
zero.  

 
We computed purity metrics for impulses placed strategically throughout the input domain. 
Given the size of input data vectors, and limited computational efficiency, we could not calculate 
temporal purity metrics for impulses placed at every point in the input domain. However, given 
the behaviour of the PFB inversion algorithm, especially when operating on data streams (instead 
of single blocks), we can predict where the algorithm will perform poorly.  



SKA Mid and Low Performance Disparity 
 
When calculating purity metrics using FIR filter coefficients designed for use with SKA Mid, we 
discovered that the performance of the PFB inversion algorithm was significantly worse than 
when doing corresponding tests for SKA Low. Moreover, we found that when we generated our 
own filter coefficients designed for SKA mid, performance increased significantly.  
 

 
Figure 1.1 Results of PFB inversion for single impulse. Official SKA mid FIR filter coefficients 

on the left, unofficial coefficients on the right. 
 

 
Figure 1.1 shows the dramatic difference between using these two sets of filter coefficients. We 
asked some of our colleagues who work more closely with SKA Mid filter design to help us 
understand why we were seeing this disparity. Luckily, one of our colleagues sent us the code 
they use to develop SKA mid FIR filter coefficients and the PFB inversion implementation they 
use to channelize data. After combing through this code, we discovered that not only are SKA 
Mid and Low FIR filter coefficients generated in a fundamentally different fashion, but the 
channelizers themselves differ in how they handle oversampling induced phase offsets. The 
following table summarizes some of these differences.  
 

 SKA Low SKA Mid 

FIR Filter Coefficients: 
Design Stages 

Uses a single stage approach. 
Given the relatively smaller 
number of taps per channel 
and output channels, SKA 

Uses a two stage approach. 
This approach is necessary 
due to the high number of 
taps per channel, and the 



Low can afford to generate 
coefficients in a single stage.  

large number of PFB output 
channels.  1

FIR Filter Coefficients: 
Oversampling 

Does not take into account 
PFB oversampling ratio. 

Takes into account the PFB 
oversampling ratio. This is 
why SKA Mid has 24.5 filter 
taps per channel.  

Polyphase Filterbank: 
zero-padding  

No zero padding. Pads the input with a number 
of zeros equal to the length of 
the FIR filter. 

Polyphase Filterbank: FFT  Uses forward FFT. Uses inverse FFT.  2

Polyphase Filterbank: output 
circular shift 

Does not apply circular shift. Applies a circular shift to the 
channelized output. The delay 
is equal to half the length of 
the FIR filter divided by the 
number of output channels 
divided by the oversampling 
ratio.  3

 
Table 1.1 Summary of differences between SKA Mid and SKA Low PFB channelizers and FIR 

filter coefficients 
 
Each means of creating filter coefficients and channelizing works on its own. However, we 
cannot use filter coefficients generated with the SKA Low algorithm in conjunction with the 
SKA Mid channelizer, or vice versa.  
 
In the PST_PFB_inversion_verification repository, these separate channelization approaches 
have been crystallized in the form of Matlab code:  
 

- polyphase_analysis_padded.m: Performs SKA Mid channelization. 
- polyphase_analysis.m: Performs SKA Low channelization 
- design_PFB_FIR_filter_two_stage.m: Creates filter coefficients compatible with SKA 

Mid channelizer. 
- design_PFB_FIR_filter.m: Creates filter coefficients compatible with SKA Low 

channelizer. 

1 This two stage approach uses “zero stuffing” to generate a sufficiently large FIR filter for the purposes of SKA 
mid. This works by designing a filter for a cutoff frequency that is some integer multiple larger than the intended 
cutoff frequency. This filter is then transformed into the frequency domain, and the resulting array is “stuffed” with 
enough zeros such that when transformed back into the time domain, it will cutoff at the desired frequency.  
2 Interestingly, if we switch to using a forward FFT, then we get significantly worse performance.  
3 If the length of the FIR filter is 196, the number of output channels is 8, and the oversampling ratio is 8/7, then the 
circular shift applied after channelization is equal to 14 (196 / 2 / (8 * 7 / 8).  



 

InverseFilterbankEngineCUDA 
 
The InverseFilterbankEngineCUDA is the name of the class in DSPSR that implements the FFT 
based PFB inversion algorithm, operating on the GPU. The main goal of PI3 has been designing, 
implementing, testing, and profiling this class.  

Design 
The InverseFilterbankEngineCUDA class is one of two “engines” in DSPSR that perform the 
PFB inversion algorithm on some channelized data. In the context of DSPSR, engines represent 
implementations of a given algorithm that are targeted to a specific hardware or software setup, 
or to a specific domain of input data, but united through a common interface. Under the hood, the 
CUDA and C++ implementations of the PFB inversion algorithm work quite differently, but 
from the perspective of the parent InverseFilterbank class, they are simply objects that operate on 
input data, saving the result in some output container. This approach allows for modular and 
extensible code, as it separates high level application logic from the nitty-gritty of algorithm 
implementation. While no plans exist at the moment for implementing more PFB inversion 
engines, we could imagine leveraging this architecture to create an OpenCL engine, or engines 
that are tuned to operating on data with large numbers of input channels. 
 
Before implementing the InverseFilterbankEngineCUDA class, we spent time considering how 
to parallelize the PFB inversion algorithm before breaking the algorithm up into discrete 
computational units, with defined inputs and outputs. These units represent individual CUDA 
kernels. In the end, the InverseFilterbankEngineCUDA member function that actually performs 
the PFB inversion algorithm basically chains together the inputs and outputs of these kernels.  
 
Figure 1.2 contains a visual representation of the kernels inside the 
InverseFilterbankEngineCUDA. Ovals represent kernels, and rectangles represent input or output 
arrays. Rectangles with dashed lines indicate that a kernel needs access to some static asset like a 
dedispersion response. Blue arrows indicate over which dimensions kernels operate. The long 
blue arrow on the right indicates that the entire transformation operates over the time dimension.  
 
 
 



 
Figure 1.2 Graphic showing each of the CUDA kernels comprising the 

InverseFilterbankEngineCUDA.  
 

Implementation and Testing 
 
We adopted a test driven development approach to implementing the 
InverseFilterbankEngineCUDA transformation. This means that we wrote tests and 
implementation code roughly at the same time.  
 
We chose to use the Catch2 unit testing framework to build a suite of unit and component tests. 
Catch2 is distributed as a single header file, meaning that it can easily be bundled up with 
DSPSR, circumventing the need to add any external dependencies.  Tests are configurable via a 
TOML file, meaning that it is easy to add new test cases. This is particularly useful when 
switching between visually debugging small transformations and running transformations against 
a variety of input data sizes. tinytoml, a header only library, provides the interface to interacting 
with TOML files in DSPSR tests.  
 
Before assembling kernels in the InverseFilterbankEngineCUDA::perform member 
function, we wrote static methods for each of the class’s associated kernels. In addition, we 
wrote C++ versions of the kernels, used as reference implementations in the unit tests. We wrote 
test cases for each kernel (or rather, the static method that calls it), comparing its result to the 
reference implementation.  
 

https://github.com/catchorg/Catch2
https://github.com/toml-lang/toml
https://github.com/mayah/tinytoml


Once all the test cases for each of the kernels were passing, we created a component test that 
configures the InverseFilterbankEngineCUDA and then calls the member function that runs the 
PFB inversion algorithm. This required some boilerplate to get up and running, but it made 
implementing the actual algorithm much easier, as we didn’t have to run the entire end-to-end 
DSPSR pipeline. 

Validation 
 
The most important aspect of the InverseFilterbankEngineCUDA is ensuring that it matches the 
InverseFilterbankEngineCPU to within floating point numerical accuracy. We created an 
integration test that runs both engines on the same input TimeSeries (filled with random numbers 
ranging from zero to one), and compares the respective outputs. In order to delve into what each 
engine was doing at each step of the transformation, we added an event emitter that dumps the 
internal state of the signal after specified points. In addition to being able to compare the output 
of the entire transformation, we could also compare the two engines at each step of the operation.  
 
We used a C++ implementation of the numpy isclose function to test whether or not individual 
values are numerically close:  
 

template<typename T> 
bool isclose (T a, T b, float atol, float rtol)  
{ 

  return abs (a - b) <= atol + rtol * abs(b);  
} 

 
For single precision floating point numbers, both atol and rtol should be 1e-5.  
 
This integration test revealed an interesting discrepancy between the C++ and CUDA engines. 
As data size grew, so did the relative error between the implementations. In particular, we noted 
a significant jump in error after each of the engines performed FFTs. The following abridged 
testing logs illustrate this issue: 
 

test_InverseFilterbankEngine_integration: fft_window 2097152/2097152 (100%) 
test_InverseFilterbankEngine_integration: fft 2097087/2097152 (99.9969%) 
test_InverseFilterbankEngine_integration: response_stitch 1572825/1572864 
(99.9975%) 

test_InverseFilterbankEngine_integration: ifft 1538338/1572864 (97.8049%) 

 

https://docs.scipy.org/doc/numpy-1.15.0/reference/generated/numpy.isclose.html


 
Each row in this log shows show the percentage of values from each stage of the CPU and 
CUDA PFB inversion implementations for whom the isclose function returns true. Notice that 
the number of unequal values grows slightly after the forward FFT (“fft”) before increasing 
dramatically after the inverse FFT (“ifft”). The number of unequal values decreases after the 
response_stitch stage because that stage of the algorithm removes the oversampled regions of 
input fine channel spectra.  
 
We took a two pronged approach to investigating this issue. First, we created a unit test that 
compares the results of cufft plans and the fftw based plans created in psrchive. Second, we ran 
our Python purity tests to determine what, if any, effect the error would have on temporal purity. 
These Python purity tests can be found here.  
 
The first test revealed that the number of nonequal values in the results of cufft and fftw FFTs 
are similar to that of the first forward FFT in the PFB inversion algorithm. 
 

test_FTransform_cufft_precision: 32759/32768 (99.9725%) 

 
Given that the PFB inversion algorithm requires two consecutive FFTs, it could be that FFT 
induced differences between the two implementations are accumulating. We need to investigate 
further to fully elucidate whether this is the root cause of the discrepancy between the two 
implementations. 
 
The second test involves running the InverseFilterbank engines on a range of channelized time 
domain impulses, producing plots of temporal purity. Figure 1.3 shows the output of this test. 
Visually, it is difficult to discern any difference between the purity output of the CUDA or C++ 
implementations of the PFB inversion algorithm. Given that both engines produce similar plots 
of temporal purity, we are confident in the correctness of the InverseFilterbankEngineCUDA.  
 

https://gitlab.com/dean-shaff/PST_PFB_inversion_verification


 
 

Figure 1.3 Impulse response of InverseFilterbankEngineCUDA (left) and 
InverseFilterbankEngineCPU (right)  

Performance Testing 
One part of the acceptance criteria for SP-149 (PFB Inversion Accelerated Prototype 
Implementation) states that the CUDA implementation of the PFB inversion algorithm should be 
able to perform in real time. This means that the implementation must be able to process data at 
the same rate or faster than the incoming data rate. The following table summarizes the data rate 
for the whole RF bandwidth of each of the SKA subbands   4

 
Band Low 1 2 3 4 5a 5b 

RF 
Bandwidth 
(MHz) 

300 700 810 1400 2380 2500 2500 

Number of 
Input 
Channels 

81000 13021 15067 26042 44271 46503 46503 

Data Rate 
(Gb/s) 

25.6 ~51.2 ~59.2 ~76.8 ~85.7 ~91.4 ~91.4 

Table 1.2 Summary of the incoming PST data rate for each subband of the SKA 

4 See SKA-TEL-CSP-0000090_4_PSTDetailedDesign_Jameson_2018-10-25.pdf  



 
 
We created a benchmarking executable that determines the data processing capability of the 
InverseFilterbankEngineCPU and InverseFilterbankEngineCUDA. This benchmark populates 
input TimeSeries objects with random numbers ranging from zero to one. Table 1.3 shows the 
result of running this benchmark on input data arrays of varying sizes. All tests were run with 
dual polarization data.  
 
dspsr-bench is a Python package that runs the DSPSR benchmarking executable on range of data 
shapes. We used it to produce the data in table 1.3.  
 

Input Channels Output Channels Input FFT length
 5

Data Rate (Gb/s) 
— CUDA 

Data Rate (Gb/s) 
— C++ 

8192 1 1024 216.677 1.479 

8192 16 1024 256.012 2.455 

8192 256 1024 259.28 3.258 

8192 1 2048 214.72 1.442 

8192 16 2048 246.469 2.392 

8192 256 2048 260.113 3.1 

32768 1 1024 211.991 1.391 

32768 16 1024 240.285 2.31 

32768 256 1024 261.314 2.868 

32768 1 2048 207.609 1.194 

32768 16 2048 237.12 1.994 

32768 256 2048 260.889 2.651 

Table 1.3 Data rate of the CUDA and C++ InverseFilterbank engines for a range of data shapes. 
 
Table 1.3 suggests that the CUDA implementation of the PFB inversion algorithm will be able to 
process SKA data in real time. These findings are by no means indicative of the performance of 
the entire PST subelement. Assessing the performance of the entire PST subelement would 
necessarily have to account for additional processing elements, like RFI mitigation as well as 
practical limitations like data transfer rates. 

5 The block size of the PFB inversion algorithm is determined by the size of the forward FFT that is applied to 
coarse channel time domain data. Larger input FFT lengths are desirable in that they improve the impulse response 
of the algorithm.  

https://gitlab.com/dean-shaff/dspsr-bench


Profiling and Optimization  
We used the Nvidia Visual Profiler (nvvp) to profile the benchmarking executable with the idea 
of identifying optimization opportunities that would be relatively easy to implement. This 
exercise proved useful, in that we were able to reduce the execution time of the three custom 
kernels that comprise the InverseFilterbankEngineCUDA by a factor of two or three. These 
optimizations came at the cost of reduced flexibility -- the custom kernels are no longer able to 
operate across multiple time or fine channel blocks.  Figures 1.5 shows the occupancy for each of 
the custom kernels in the InverseFilterbankEngineCUDA. High occupancy means that the 
kernels are utilizing GPU resources well. We iteratively adjusted our kernels in order to increase 
occupancy and decrease execution time, ensuring that unit and component tests passed after each 
change in source code.  
 

 
Figure 1.5 Occupancy reports for each of the custom kernels in the 

InverseFilterbankEngineCUDA 
 
We identified a few key areas that could potentially increase the performance of the 
implementation:  
 



- Operate across multiple time or fine channel blocks at the same time. Right now, the 
InverseFilterbankEngineCUDA is parallelized in frequency and polarization, but still 
iterates over processing blocks. This optimization would dramatically increase the 
memory usage of the implementation, potentially making it unwieldy for large data sizes.  

- Implement cuFFT callbacks. cuFFT callbacks provide a mechanism by which we could 
reduce the total number of trips from global memory. This would be especially beneficial 
in the case of the InverseFilterbankEngineCUDA, as the three custom kernels it uses 
spend most of their time reading and writing from and to global memory.  


