
2019-06-17 Leap Module Development

There are 5 Leap module locations on the Talon-DX motherboard. On 
those 5 locations, 10 leap modules can be installed – 5 for RX and 5 
for TX.

The I2C mapping for these devices are:

Since no Linux driver exists for these devices in the current Linux 
distribution, control is not specified via the device tree file. 
Rather, the TANGO device server is designed to access the I2C bus 
directly to communicate with the physical devices.

The above diagram shows the placement of the 5 Leap module sites, 
with orientation on the motherboard provided by the placement of the 
SFP module providing Ethernet connectivity (top right) and the SD 
card providing the root filesystem and bitstream images.

Each Leap site is associated with an index (1 through 5) with 
corresponding i2c addresses for both the RX and TX leap modules that 
may be affixed to each site. The hex based addresses (prefixed by 
‘x’) are the value that the sysfs system uses to reference the 
individual modules on each site. These addresses are provided to the 
leap module TANGO device server as a decimal number (provided in 
brackets). 

Testing configuration is with sites 1 and 2 populated with both RX 
and TX Leap modules. Site 2 has a fiber optic loopback cable 
attached.

LeapID

The LeapID value is stored as a device property, and represents the 
position of the Leap MBO module on the Talon-DX board. This value may

4 : RX x46 (70) / TX x56 (86)

2 : RX x44 (68) / TX x54 (84)

1 : RX x43 (67) / TX x53 (83)

3 : RX x45 (69) / TX x55 (85)

5 : RX x47 (71) / TX x57 (87)
SD Card

Ethernet

1

2

3

4

5

GUI 
Index



be an index for i2c address values which could be provided by a 
lookup table in the device server header file. See diagram above.

LeapType

The leapType value is stored as a device property. This value 
indicates whether the device is a TX or RX module. (TX=0, RX=1). This
value is necessary as some properties of the MBO do not share exact 
register addressing across leapType from one module to another. Upon 
instantiation of a device within the server, the device property 
leapType will be set, and not changed.

Temperature

The TANGO device reads 2 8-bit registers to compose the value for 
temperature. The first 8 bits encode the integer part of the 
temperature in 2’s complement. The second 8 bits encode the decimal 
part of the temperature as a fractional part in units of 1/256 
degrees, coded in binary. The TANGO device returns an integer value 
that comprises both 8-bit numbers, the higher order 8 bits represents
the integer part, and the lower order 8 bits represents the 
fractional part. The python GUI is responsible for conversion into a 
floating point displayed number.

Note that the temperature monitor point is only available on the TX 
module.

Voltage

Voltage is read and returned by the TANGO device as a 16-bit integer 
in units of 100uV. The python GUI is responsible for conversion to 
integer voltage value for display. (divide by 10^6 to read out value 
in Volts).

Note Vcc33 and VccHI are supported for TX, and only Vcc33 is 
supported for RX.

Control

Since there is no viable driver in the Linux distribution for the 
LEAP MBO module, we are forced to communicate with this module over 
I2C bus, using the i2ctools library. A TANGO device has been written,
based on the TalonDXBSMCBase module called TalonDXBSMCLeap. 

The TalonDXBSMCBase module contains references to all the required 
i2c commands necessary to read and write values on the i2c bus. 



The TalonDXBSMCLeap module has methods written which take advantage 
of the base class functions, to read and write in the various formats
required to communicate with the data structures on the module.

TANGO Device Server Base Class

Base Class

The TANGO device server is built upon the TalonDXBSMCBase class. This
class provides basic information for the device under control, which 
is stored in the TANGO database as device properties. The list of 
device properties in the base class are as follows:

• busID – the I2C bus address for the HW device
• i2cAddress – the I2C device address for the HW device
• mod – the device module name (as referenced in the device tree 

file)
• compat – the device compatibility string as detected by the 

Linux driver (if available)
• name – the device name (not required)
• deviceID – internal index for device (if multiple devices)
• hwFilter – a string used to construct the hwPath variable within

the TANGO device server.
• HwPrefix – a string used to construct the hwPath variable within

the TANGO device server.

One additional device property in the base class is hwPath. This 
property is constructed within the init method of the TANGO device 
server. This is the path where device attributes are exposed to the 
user space within the HPS Linux distribution.

A suite of TANGO device commands accompany these attributes within 
the base class, providing access to the values to any software able 
to access the device.

Note that the device properties associated with i2c-sysfs addressing 
and attribute location are not used within this TANGO device server. 
Instead, functions exist within the TalonDXBSMCBase class to access 
the I2C bus directly: i2c_read and i2c_write. The device server is 
still reliant on the device properties for storage of addressing 
information for the individual physical devices.

In addition to the device properties supplied by the base class, this
TANGO device server requires two additional device properties to 
identify specific Leap MBO modules:

• leapID – the internal leap module ID (1-5 – see diagram above)
• leapType – an integer indicating the leap module type (TX=0, 

RX=1)



One TANGO device per Leap Module per functionality (RX or TX) is 
required to be defined within the TANGO database. This amounts to 10 
individual TANGO devices, accessed by the same device server 
instance.

Device Class

The TANGO device server class responsible for monitor and control of 
the Leap MBO controller is named TalonDXBSMCLeap. The class provides 
monitor and control over the following scalar attributes:

• temperature – reading from the temperature sensor (TX module 
only)

• voltage33 – reading from the input voltage 3.3V (TX & RX 
modules)

• voltageHI – reading from the input voltage HI (TX & RX)
• presenceReg – the presence register value, provides information 

about the physical hardware
• statusReg – the status register providing aggregate station 

information
• globalCDR – provides control of the global Clock Data Recovery 

bypass setting
• lossSignal – provides the signal loss flag for all 12 channels 

encoded as 12 bits within a 16 bit value
• lossLock – provides the signal lock loss flag for all 12 

channels encoded as 12 bits within a 16 bit value
• fault – provides the fault flag bit for all 12 channels encoded 

as 12 bits within a 16 bit value
• disable – provides the channel disable bit for all 12 channels 

encoded as 12 bits within a 16 bit value
• bypassCDR – provides the Clock Data Recovery bypass control bit 

for all 12 channels encoded as 12 bits within a 16 bit value
• outputDisable – provides the output disable control bit for all 

12 channels encoded as 12 bits within a 16 bit value

In addition to the scalar attributes, the TANGO device server 
provides monitor and control over the following spectrum attributes:

• inputEQ – the input equalization value for Leap TX modules. This
value is validated by the GUI as being in the range 0x0 to 0xf. 
The inputEQ value is encoded over 6 internal 8-bit device 
registers, with pairs of channels being encoded per register. 
This is abstracted by the TANGO device server, which provides a 
12 element array of DevULong values.

• inputMidEQ – the input mid equalization value for Leap TX 
modules. This value is validated by the GUI as being in the 
range 0x0 to 0xf. The inputEQ value is encoded over 6 internal 



8-bit device registers, with pairs of channels being encoded per
register. This is abstracted by the TANGO device server, which 
provides a 12 element array of DevULong values.

• outputAmplitude – the output amplitude value for Leap RX 
modules. This value is validated by the GUI as being in the 
range 0x0 to 0x7. The inputEQ value is encoded over 6 internal 
8-bit device registers, with pairs of channels being encoded per
register. This is abstracted by the TANGO device server, which 
provides a 12 element array of DevULong values.

• outputDeemphasis – the output de-emphasis value for Leap RX 
modules. This value is validated by the GUI as being in the 
range 0x0 to 0xf. The inputEQ value is encoded over 6 internal 
8-bit device registers, with pairs of channels being encoded per
register. This is abstracted by the TANGO device server, which 
provides a 12 element array of DevULong values.

All attributes are polled within the TANGO device server on a 3s 
interval. All attributes are READ ONLY. Changes to attribute values 
are accomplished through TANGO commands as described below:

• regWrite – Generic register write. Writes an 8-bit value to the 
provided register address. The input argument for this command 
is a DevULong value. Bits within the input argument masked at 
0xff encode the register address. The value to be written is 
masked at 0xff00.

• RegRead – Generic register read. Reads an 8-bit value from the 
specified register address. The input argument is the 8 bit 
register address and the output is the value read from the 
specified register, provided as a DevULong integer.

• GetLeapType – returns the leap type device property of the 
current leap module. TX=0, RX=1

• getLeapID – returns the internal leap ID (GUI ID from the 
diagram above) for the current leap module (range is 1-5)

• reset – invokes a reset of the device by writing to the reset 
register.

• BypassON – activates the channel CDR bypass for the specified 
channel. Input argument is the channel ID (0-11)

• BypassOFF – deactivates the channel CDR bypass for the specified
channel. Input argument is the channel ID (0-11)

• bypassALL – writes the channel CDR bypass for all channels 
simultaneously. The input argument is the new CDR Bypass value 
(0=OFF, 1=ON).

• getIntLStatus – Returns the INT_L status (it is not clear 
according to the product specification what the INT_L value 
represents – fill this in based on information from hardware 
designer – todo).

• GetTXLOSStatusSummary – returns the Loss of Signal Status 
summary for the TX device. This is a 16 bit number (read from 2 
consecutive registers from the TX module) that encodes one bit 



for each channel. Each bit signifies the loss of signal status 
for that channel. Channels are indexed from 0 through 11. Bits 
12 through 15 are discarded.

• GetRXLOSStatusSummary – returns the Loss of Signal Status 
summary for the RX device. This is a 16 bit number (read from 2 
consecutive registers from the RX module) that encodes one bit 
for each channel. Each bit signifies the loss of signal status 
for that channel. Channels are indexed from 0 through 11. Bits 
12 through 15 are discarded.

• GetTXLOLStatusSummary – returns the Loss of Lock Status summary 
for the TX device. This is a 16 bit number (read from 2 
consecutive registers from the TX module) that encodes one bit 
for each channel. Each bit signifies the loss of lock status for
that channel. Channels are indexed from 0 through 11. Bits 12 
through 15 are discarded.

• GetRXLOLStatusSummary – returns the Loss of Signal Status 
summary for the RX device. This is a 16 bit number (read from 2 
consecutive registers from the RX module) that encodes one bit 
for each channel. Each bit signifies the loss of signal status 
for that channel. Channels are indexed from 0 through 11. Bits 
12 through 15 are discarded.

• GetTXFaultStatusSummary – returns the Fault Status summary for 
the TX device. This is a 16 bit number (read from 2 consecutive 
registers from the TX module) that encodes one bit for each 
channel. Each bit signifies the fault status for that channel. 
Channels are indexed from 0 through 11. Bits 12 through 15 are 
discarded.

• GetRXFaultStatusSummary – returns the Fault Status summary for 
the RX device. This is a 16 bit number (read from 2 consecutive 
registers from the RX module) that encodes one bit for each 
channel. Each bit signifies the loss of signal status for that 
channel. Channels are indexed from 0 through 11. Bits 12 through
15 are discarded.

• GetTXBiasStatusSummary – returns the TX Bias Hi-Lo Alarm Status 
summary for the TX device. This is a 16 bit number (read from 2 
consecutive registers from the TX module) that encodes one bit 
for each channel. Each bit signifies the Bias Hi-Lo Alarm status
for that channel. Channels are indexed from 0 through 11. Bits 
12 through 15 are discarded.

• GetTXModuleStatusSummary – returns the Module Status summary for
the device. This is a 16 bit number (read from 2 consecutive 
registers from the TX module) that encodes one bit for each 
channel. Each bit signifies the module status for that channel. 
Channels are indexed from 0 through 11. Bits 12 through 15 are 
discarded. Ths alarm is an aggregate alarm, asserted when any 
alarm is asserted on the TX module.

• GetRXModuleStatusSummary – returns the Module Status summary for
the device. This is a 16 bit number (read from 2 consecutive 
registers from the RX module) that encodes one bit for each 



channel. Each bit signifies the module status for that channel. 
Channels are indexed from 0 through 11. Bits 12 through 15 are 
discarded. Ths alarm is an aggregate alarm, asserted when any 
alarm is asserted on the RX module.

• GetRXPowerStatusSummary – returns the Power Status summary for 
the device. This is a 16 bit number (read from 2 consecutive 
registers from the RX module) that encodes one bit for each 
channel. Each bit signifies the module status for that channel. 
Channels are indexed from 0 through 11. Bits 12 through 15 are 
discarded. 

• SetGlobalCDR – Writes a new value to the global CDR register. 
Writing 0 disables CDR globally to all channels. Writing 1 
permits the device to follow individual channel TX/RX CDR 
configuration settings. The input parameter is the value to 
write.

• OutputENABLE – writes 1 to the the output enable bit in order to
enable the specified TX/RX output channel. The input argument is
the channel ID (0-11).

• OutputDISABLE – writes 0 to the output enable bit in order to 
disable the specified TX/RX output channel. The input argument 
is the channel ID (0-11).

• outputALL – writes the output enable bit identially for all 
channels simultaneously. The input argument is the new output 
bypass value (0=OFF, 1=ON)

• channelENABLE – writes 1 to the channel enable bit in order to 
enable the specified RX channel. The input argument is the 
channel ID (0-11). Not provided for TX modules.

• channelDISABLE – writes 0 to the channel enable bit in order to 
disable the specified RX channel. The input argument is the 
channel ID (0-11). Not provided for TX modules.

• channelALL – writes the channel enable bit identially for all 
channels simultaneously. The input argument is the new channel 
bypass value (0=OFF, 1=ON)

• SetRXOutputAmplitude – writes a new output amplitude value to an
RX output channel register. The input parameter is a 32-bit 
DevULong value. The 0xf bits in the input parameter value mask 
the channel ID (0-11) and the 0x70 bits in the input parameter 
mask the new output amplitude value to be written.

• SetRXOutputDeemphasis – writes a new output de-emphasis value to
an RX output channel register. The input parameter is a 32-bit 
DevULong value. The 0xf bits in the input parameter value mask 
the channel ID (0-11) and the 0x70 bits in the input parameter 
mask the new output deemphasis value to be written.

• SetTXInputEQ – writes a new input equalization value to a TX 
input channel register. The input parameter is a 32-bit DevULong
value. The 0xf bits in the input parameter value mask the 
channel ID (0-11) and the 0xf0 bits in the input parameter mask 
the new input equalization value to be written.



• SetTXInputMidEQ – writes a new input mid equalization value to a
TX input channel register. The input parameter is a 32-bit 
DevULong value. The 0xf bits in the input parameter value mask 
the channel ID (0-11) and the 0xf0 bits in the input parameter 
mask the new input mid equalization value to be written.

• SetRXOutputAmplitudeALL – permits the user to apply one output 
amplitude value to all channels simultaneously. The input 
parameter is the new value for output amplitude. The accepted 
range is 0x0-0x7, and the input value is masked internally as 
such.

• SetRXOutputDeemphasisALL – permits the user to apply one output 
deemphasis value to all channels simultaneously. The input 
parameter is the new value for output deemphasis. The accepted 
range is 0x0-0x7, and the input value is masked internally as 
such.

• SetTXInputEQALL – permits the user to apply one input 
equalization value to all channels simultaneously. The input 
parameter is the new value for input equalization. The accepted 
range is 0x0-0xf, and the input value is masked internally as 
such.

• SetTXInputMidEQALL – permits the user to apply one input mid 
equalization value to all channels simultaneously. The input 
parameter is the new value for input mid equalization. The 
accepted range is 0x0-0xf, and the input value is masked 
internally as such.

All register addresses specified in command descriptions are register
addresses on the Leap MBO device. Please refer to the product 
specification for register descriptions.



GUI

Two separate pages of GUI are required to adequately represent both 
the RX and TX Leap MBO modules. 

The user may select specific modules via the selector at the top of 
each screen in the standalone version of the GUI. If selected from 
the main window, the control for the selected module only will 
appear, and the user will not be able to navigate to another module 
from this display.



The user is able to modify any input parameter within the channel 
table. Parameters providing global access are at the top of the 
display list. Alarms are indicated by LED display. Aggregate alarms 
are included at the top of the channel list.

Module-level monitor points and alarm indicators are provided at the 
top of the page, just below the selector. These are visible only as 
required, based on whether the user has selected a TX or RX module, 
as these modules do not necessarily share all monitor points.



The internal GUI working prevent out of range values from being 
written to the device by validating all input prior to action. If an 
input value is out of range, the previous value is replaced, and the 
user is informed that the value is out of range via the status 
display at the top of the window.


