
Introduction
Floating Point (FP) arithmetic has become more widespread
in wireless communications, military applications, aeronauti-
cal applications, 3D graphics simulations, aircraft design and
signal processing[1], [2], [3], [4], [5]. However, FP number
system provide less accurate, less dynamic range and more
exceptions resulting in complicated Floating Point Unit (FPU)
and power greedy processors. On other hand, POSIT number
system offers much better accuracy, better dynamic range and
fewer exception at half data width with respect to FP number
system. Posits are a new form of number system invented by
Gustafson in December 2016. The concept was first publicly
shared as a Stanford lecture seminar [6] in February 2017. The
first peer-reviewed posit journal paper [7] was published
in June 2017. Since then, studies on POSIT correctness [8], [9],
[11] accuracy, efficiency are performed by comparing
to floats [10].

We have designed world’s first Posit Co-processor Unit (PCU)
which is equivalent to double precision FPU with
POSIT<32,2> configuration. The PCU is the base architecture
for SupersoniK, RacEr, FalKon and Tez IP cores. The beauty of
our PCU is that circuit is much simpler, silicon efficient and
high performance. Our PCU performs addition, subtraction,
multiplication, division, square root and other operations
about 4X faster with respect to state-of-the-art FPUs . These
operations are quite frequent in FP applications.

1

Supported Features
- Sum of Products
- Addition/Subtraction
- Multiplication
- Multiply Add/Subtract
- Two independent multiplications
- Increment, Decrement
- Two two’s complement operations
- Sum of Reciprocals
- Sum of Inverse Square roots
- Sum of Divisions
- Sum of Square roots and
- Many more

Design Files Encrypted RTL

Testbench Verilog

Constraint Files Not provided

Simulation Model Encrypted Verilog model

Supported S/W Driver N/A

Provided with core

Design Entry Altera Quartus 16.1

Synthesis SAltera Synthesis

Tested Design Flows

PCU IP Core

2 PCU FPU

8 bit Scaling (Unbiased) 11 bit expoent (biased)

No normalization of inputs and ouputs Normalized inputs and
 ouputs

Easier exception handling Exception hadling for 0, ∞,
only 0 and ∞ -∞, overflow, underflow and
 NAN

No overflow and underflow Overflow and underflow
 exist

Only one rounding mode: Four rounding modes
round to nearest

No sub normal numbers Sub normal numbers exist

Shorter cycle time Longer cycle time

Some power can be saved smaller Power and performance is
numbers and higher performance for same for all numbers
smaller numbers

 32 bit precision 64 bit precision

Comparisions

 PCU Operations

A + D, B + C A × D + B × D = (A + B) × D
A - D, B - C A × D - B × D = (A - B) × D
A × D, B × C 1/C, 1/D
A × D - B× C 1/Sqrt(C), 1/Sqrt(D)
A × D + B × C -A, -B
A + (B × C) 1/D + 1/C
A - (B × C) 1/D - 1/C
A × D + B 1/Sqrt(D) + 1/Sqrt(C)
A × D - B A++, B++, A--, B--
A, B compare operations 1-A, 1-B
A/D, B/C Sqrt(D), Sqrt(C)
A/D + B/C Sqrt(D) + Sqrt(C)
A/D - B/C Sqrt(D) - Sqrt(C)
Integer to POSIT POSIT to Integer

Port Description
Port numbers from 1 to 4 accepts four operands A, B, C and
D having 32 bit data width. 31st bit is sign bit, remaining 31
bits are comprised of regime, exponent bits and fraction bits,
these bits keep varying depending on operands, for more
information see [6], [7], [8]. Port number 5 is clock signal,
the PCU uses a single clock, all input and output interfaces and
internal state are subject to this single clock. Port number 6,
is reset signal. This signal is active-Low and must be asserted
for one clock cycle to ensure correct operation and it is a global
synchronous reset which resets all control states in the core; all
data in transit through the core is lost when reset is asserted.
Port number 7 is a control for Addition/Subtraction operation,
active-High is for subtraction operation. By default, this port
is set to active-Low. Port number 8 is to enable reciprocal and
inverse square root operation, when this port is active-High,
port number 9 chooses which operation to perform, port
number 9 active-High is for inverse square root and
active -Low is for reciprocal. By default Port number 8 is set to
active-Low. Port number 10, three bits, are for compare
operations, 001 is for <, 010 is for >, 011 is for<=, 100 is for
>=, 101 is for == and 110 is for !=, by default this port is set
000 bits. Port number 10, two bits, is for conversion
operations, 01 is for Integer to POSIT and 10 is for POSIT to
Integer, by default this port is set to 00 bits. The PCU performs
operations as mentioned in PCU operations table. Port
number 12 is result output having 32 bit data width.

3

 1 2 3

4

5

6

7
 8 9 10 11

 12

 Input Output

PCU

Latency
Latency of multiply add, sum of multiply add, sum of reciprocal, sum of inverse square root , division, square root, sum of division
and sum of square root operations require 6 cycles where as addition/subtraction ,multiplication, reciprocal, inverse square root
operations require 4 cycles, an extra 5th is required to compute division and square root operations. All other operations
require 2 cycles. All operations guaranteed to POSIT rounded results.

4

Design Guidelines with PCU IP Core
A POSIT is made up of four components: sign, regime, exponent, and fraction. A POSIT is specified by its size in bits, nbits, and the
maximum number of exponents bits, es. Suppose we view the bit string for a POSIT as a 2’s complement signed integer, ranging from
-2n-1 to 2n-1. Let k be the integer presented by the regime bits, and e the unsigned integer represented by the exponent bits, if any. If
the set of fraction bits is {f1, f2,..., ffs} possibly the empty set, let f be the value represented by 1. f1f2 ... ffs. Then the value of a POSIT is
defined by the following equation:

 0, p =0
 x = ±∞, p = -2n-1

 sign(p) × useedk ×2e × f, all other p

The following figure shows these fields for a 16-bit POSIT with 3 exponent bits, referred to as POSIT<16,3>.

The sign bit 0, shown in red, implies that the value is positive. The regime bits have a run of three 0s terminated by the opposite bit
1, which implies the power of useed is -3. Useed is defined as 22 and represents the scaling factor of the regime. In this example, the
scale factor contributed by the regime is 256-3. The exponent bits 101, shown in blue, represent 5 as an unsigned binary integer, and
contribute a scale factor of 25. Finally, the fraction bit 11011101, shown in black, represent 221 as an unsigned binary integer, yielding
a fraction value of 1.0 + 221/256. The value of this POSIT bit pattern is 477x2-27 ~ 3.55393 × 10-6.

The size of the regime and exponent fields is variable creating a tapered precision real number system, with a dynamic range perfectly
symmetric around 1. The minimum and maximum positive number for a POSIT configuration are called minpos and maxpos. Their
values are a function of the scaling factor of the regime and the size of the POSIT:

{minpos, maxpos } = {useed-nbits+2, useednbits-2 }

The ratio of maxpos to minpos is useed2nbits-4, which defines the dynamic range of the POSIT. The POSIT format uses regime bits to raise
useed to the power of any integer from -nbits+1 to nbits-1, otherwise stated, the dynamic range of a POSIT is an exponential of an
exponential of an exponential. This allows POSITs to create a larger dynamic range from fewer exponent bits than IEEE floats, leaving
more fraction bits available to improve the precision of a value representation.

A wonderful way to visualize the structure of a POSIT configuration is to realize that they derive from Type II unums that mapped
binary integers to the projective reals. Projective reals wrap the real number line onto a circle so that negative and positive infinity
meet at the top.

{

es

5

The diagram on the left represents a 2 bit POSIT. We move to three bits by inserting a value between 1 and ±∞. It could be any real
number greater than 1; it could be 2, 10, π, or googol. The choice of this number seeds how the rest of the ring of unums is populated,
to signify its importance this number was given the symbolic name useed. As we have seen above, for POSITs this value is set to
22 . Further bit expansion follows the rules that negation reflects about the vertical axis, and reciprocation reflects about the horizontal
axis. The next figure shows a ring plot of values for a POSIT<5,1>:

es

6

Exceptions

In POSIT number system, there are fewer exceptions, as shown in the following table. Not A Real (NAR) exxeption is the numbers
not real numbers. One important distinction between NaR and the IEEE 754 “NaN” concept is in comparisons. A NaR tests as equal to
itself just like any other bit pattern. It maps to the most negative 2’s complement signed integer, and if used it comparison operations,
it tests as less than all other POSITs. In this way, there is no need for POSIT comparison operations. All the operations of 2’s comple-
ment 32-bit integers suffice for comparison. There is no “unordered” concept with POSITs as there is with NaN.

Conversion Wrappers

In order to interface with existing processors or IP cores, VividSparks provide conversion wrappers which converts number from POSIT
number system to IEEE-754 Floating point number and IEEE-754 Floating point number to POSIT number system.

Implementation Results

The PCU with POSIT<32,2> configuration is implemented and exhaustively tested in Altera Aria 10 FPGA with device family
10AS027H3F34I2SG, the design is compliant with POSIT standards. Following table shows utilization report and frequency PCU is
running. The PCU consumes only 15% of Adaptive Logic Modules (ALMs) and less than 1% of memory bits. In real VLSI design, the
PCU consumes even lesser area. VividSparks have highly optimized design for tape-out.

 Execptions Flags

 NAR NAR

 ±∞ Invalid_OP

 Divide by Zero Invalid_OP
 S

Logic Utilization (in ALMs) Registers PINs Block Memory Units Frequency

15,626 1,190 234 68, 608 100 MHz

References
[1] Rad-Hard 32 bit SPARC V8 Processor, AT697E.

[2] S. Jacob and K. Padmakumar, “Floating Point Addition using low power CSA“, Interantional Journal of VLSI and Embedded
 systems, vol. 5, Article 09450, Nov. 2014.

[3] K. Diefendorff, P. K. Dubey, R. Hochprung and H. Scales, “Altivec Extension to PowerPC Accelerates Media Processing“, IEEE
 Micro, pp. 85-95, Mar./Apr. 2000.

[4] D. Harris, “A Powering Unit for an OpenGL Lighting Engine“, Proc. 35th Asilomar Conf. Signals, Systems, and Computers,
 pp. 1641-1645, 2001.

[5] N. Ide et al.(Sony Playstation 2), “2. 44-GFLOPS 300-MHz Floating-Point Vector-Processing Unit for High-Performance 3D
 Graphics Computing“, IEEE J. Solid-State Circuits, vol. 35, no. 7, pp. 1025-1033, Jul 2000.

[6] J. Gustafson and I. Yonemoto. (2017, Feb) Beyond floating point: Next generation computer arithmetic. [Online].
 Available: https://www.youtube.com/watch?v=aP0Y1uAA-2Y

[7] J. Gustafson and I. Yonemoto, “Beating floating point at its own game: Posit arithmetic,” Supercomputing Frontiers and
 Innovations, vol. 4, no. 2, Jun 2017.

[8] J. Gustafson, “Posit Arithmetic,” Mathematica Notebook describing the posit number system, 30 September 2017.

[9] J. Chen, Z. Al-Ars, and H. Hofstee, “A matrix-multiply unit for posits in reconfigurable logic using (open)capi.” ACM, 2018,
 (To Be Published).

[10] P. Lindstrom, S. Lloyd, and J. Hittinger, “Universal coding of the reals: Alternatives to IEEE floating point,” in Conference for
 Next Generation Arithmetic. ACM, 2018, (To Be Published).

[11] https://www.posithub.org/

 VividSparks IT Solutions Pvt. Ltd.
 CIN: U72200K2014OPC077975
 #38 BSK Layout, Hubli-580031, INDIA.
 www.vivid-sparks.com
 inquiry@vivid-sparks.com

VividSparks reserves the right to make changes to any products and services described herein at any time without notice. Consult VividSparks or an authorized sales representative
to verify that the information in this document is current before using this product. VividSparks does not assume any responsibility or liability arising out of the application or use of
any product or service described herein, except as expressly agreed to in writing by VividSparks; nor does the purchase, lease, or use of a product or service from VividSparks convey a
license under any copyrights or any other of the intellectual rights of VividSparks or of third parties. All information is provided as is. There is no warranty that it is correct or suitable for
any purpose, neither implicit nor explicit.

Copyright © 2018 VividSparks IT Solutions Pvt. Ltd.

7

