
InverseFilterbank: FFT bases PFB inversion

Part of the PST signal model involves implementing a FFT based PFB inversion
algorithm. This algorithm takes channelized, low time resolution data and
produces a higher time resolution signal with a smaller number of channels. From
a science perspective, this algorithm is desirable in that it allows for analyzing
time series at higher time resolutions, potentially revealing fine temporal structure
that would not be present in more channelized data. In the context of the SKA,
introducing FFT based PFB inversion to the PST signal chain could remove an
upstream processing step, namely the stage where the CBF performs a synthesis
filterbank operation on high frequency resolution beamformed data streams.

FFT based PFB inversion, or simply PFB inversion, is distinct from the synthesis
filterbank algorithm. Both algorithms represent synthesis operations, or recom-
bining channelized data to produce higher time resolution data. The synthesis
filterbank is highly constrained by polyphase filterbank filter design, making it
unsuitable for use in some signal processing settings. On the other hand, PFB
inversion is lossy, in that it will not perfectly reconstruct some upstream time
series. If some time series is fed through a channelization algorithm, which is in
turn passed to either the synthesis filterbank or PFB inversion algorithm, the
synthesis filterbank can perfectly reconstruct the original time series, while the
PFB inversion will introduce some error. With some tweaks, this error can be
properly mitigated.

The purpose of this document is to highlight some of the modeling and imple-
mentation work we have done in order to meet the acceptance criteria for feature
129. To this end, we have implemented the PFB inversion algorithm in the
context of the PST prototype DSPSR. This implementation matches the updated
Matlab PST signal model to within floating point numerical precision, and it
meets the purity requirements as specified in the PST signal model document.
Moreover, we are able to show that PFB inversion is correct inside the larger
pulsar processing capabilities of DSPSR.

Matlab PST Signal Model Updates

We introduced two modifications to the PFB inversion algorithm in order to
meet the PST signal model requirements. The first involves correcting for the
polyphase filterbank FIR passband and the second comprises applying FFT
window functions and using an overlap discard technique to attenuate the
effect of sharp cutoffs when moving between processing blocks. Moreover, we
investigated how properly aligning the PFB inversion FFT window can affect
phase discrepencies between input data and the output of the PFB inversion.
Combined, these modifications contribute to a significant increase in temporal
and spectral purity.

1



Derippling

The Polyphase Filterbank algorithm uses a low-pass FIR filter as part of chan-
nelization. When the number of filter coefficients is relatively small, these filters
have some bandpass ripple, which can play a role in diminishing spectral purity.
We effectively correct for this during PFB inversion by dividing the results of
forward FFTs with the frequency response of the FIR filter used during chan-
nelization. This derippling correction can have the same effect on spectral and
temporal purity as dramatically increasing the number of filter taps, without
making the same significant impact on computational efficiency.

FFT Window Functions

Previous work with the Matlab PST Signal Model code did not involve working
with streaming data; only single processing blocks were used at any given time.
Initial modeling work for PDR/CDR assumed that the processing block edge
effects could be effectively mitigated with sufficient block overlap, but this
had not been rigorously evaluated. We discovered that with no block overlap
or FFT windows in place, the PFB inversion algorithm results in significant
temporal leakage at processing block edges. This leakage can be mitigating
by implementing an appropriate overlap discard method, and by using FFT
windows to reduce the ringing introduced by the inherent sharp-edged window
function inherent in any time domain fourier analysis. Our modelling efforts
suggest that a Tukey window function offers the best spectral and temporal
performance.

PFB Sample Alignment

Care must be taken when choosing at which sample to start inverting oversampled,
channelized data. If we don’t have information regarding at which point the
upstream channelization algorithm started, we can introduce a phase shift
between the original input data and the inverted data. This phase shift cannot
be corrected simply by offsetting the input or inverted output an expected
number of samples – it is an artifact of oversampling, inherent in the inverted
data due to our choice of FFT window alignment. In order to eliminate this
issue, the PFB inversion algorithm has to know on which sample any upstream
channelizers started. Moreover, the sample on which PFB inversion begins has to
be a multiple of the numerator of the oversampling factor plus any channelization
induced offset.

Matlab Signal Model Purity

With the modifications we made to the PFB inversion algorithm, we were able
to drive down error to the point where the algorithm meets PST signal model

2



Figure 1: Current temporal purity of the Matlab PFB inversion implementation.

3



Figure 2: Current spectral purity of the Matlab PFB inversion implementation.

4



Figure 3: Max, sum and mean of power of complex difference of input and
inverted complex sinusoids as a function of sinusoid frequency.

5



purity requirements when processing streaming data.

The general prescription for running purity tests consists of generating some
input signal, channelizing it, and then inverting the results of the channelizer.
We then compute two purity measures, the max spurious power and the total
spurious power. Here, spurious power is the power of the signal when the
maximum value has been set to zero. Depending on whether the purity test is
targeting the time or frequency domain, these measures will be computed with
respect to the inverted time series, or an inverted power spectrum.

From the PST signal model document, the recommended levels for error measures
are as follows.

1. max-max-spurious power – temporal (-70 dB)
2. max-max-spurious power – spectral (-70 dB)
3. max-total-spurious power – temporal (-60 dB)
4. max-total-spurious power – spectral (-60 dB)

The following section addresses each of these requirements individually, using
figures 1, 2 and 3 as visual references. These figures were produced with a 256
channel PFB using 1024 sample forward FFT, and 128 sample overlap region in
the PFB inversion step. Better performance can be acheived using larger FFT
lengths.

Figure 1 shoes the temporal performance of the Matlab implementation of the
PFB inversion algorithm for a variety of impulse positions across the operation
domain. The three subplots in the figure show the max, total and mean spurious
power of the inverted time series.

Figure 2 shows the spectral performance of the Matlab implementation of the
PFB inversion algorithm for complex sinusoids of a range of frequencies. The
three subplots in this figure show the max, total and mean spurious power of
the spectrum of the inverted data.

Figure 3 shows the maximum, sum and mean of the power of the complex
difference of input and inverted complex sinusoids for a range of frequencies.
These performance indicators are not used in the PST specification, but they
are useful for demonstrating the correspondance between spectral purity and
the numerical similarity of time series.

1. The first subplot in figure 1 shows that the max spurious power is below -70
dB. Close to the block edges, the error does creep up close to the reference
measure.

2. The first subplot in figure 2 shows the max spurious power for complex
sinosoids. For all tested frequencies, the max spurious power is within
specification.

3. The second subplot in figure 1 shows that the total spurious power is below
-60 dB. As impulses approach the edges of processing blocks, the total
spurious power does approach the specified limit.

6



4. The second subplot in figure 2 shows the total spurious power for complex
sinosoids. This is below the -60 dB for all tested frequencies.

PFB inversion in DSPSR

The main objective of SP-129 was to implement the PFB inversion algorithm
in DSPSR. We created several new classes inside DSPSR, in addition to imple-
menting some architectural tweaks to accomodate the PFB inversion’s synthesis
paradigm. In the end, we added roughly 800 lines of C++ implementation code
to the DSPSR codebase.

The most important classes to the DSPSR PFB inversion implementation are
the InverseFilterbank and InverseFilterbankEngineCPU classes. The for-
mer prepares input and output data buffers for the operation, in addition
to setting up any associated time of frequency domain windows. An ex-
ample of a frequency domain window might be a dedispersion kernel. The
InverseFilterbankEngineCPU class is what actually performs the PFB inver-
sion algorithm. As it’s name suggests, it is designed to work on a CPU. By
splitting the preparation and operation stages of the the PFB inversion transfor-
mation, we open ourselves to creating algorithm implementations that target
different hardware. In a subsequent program increment, we plan to implement
a InverseFilterbankEngineCUDA engine which operates on CUDA enabled
GPUs.

DSPSR has traditionally been used for channelizing time series, meaning that
much of the code contains assumptions about the nature of the relationship
between the input and output of transformation operations, namely that the
number of output channels will be larger than the number of input channels.

In addition to the main InverseFilterbank and InverseFilterbankEngineCPU
classes, we created a number of other adjacent classes that represent useful
software representations of things like FIR filters and FFT windows.

InverseFilterbank validation

We created a Python test harness to validate the C++ PFB inversion implemen-
tation against the Matlab signal model code. This harness relies on dumping
the state of the signal after the InverseFilterbank operation, allowing us to
compare the results of the C++ and Matlab PFB inversion implementations.
After testing complex sinusoids, time domain impulses and simulated pulsar data
we were able to determine that the Matlab and C++ implementations match to
within the bounds of single precision floating point accuracy. Figures 4, 5, and 6
show these differences.

Another aspect of the InverseFilterbank validation is ensuring that it works
in the larger context of DSPSR. To test this, we generated some simulated pulsar

7



Figure 4: Difference between Matlab and DSPSR PFB inversion implementations
for a complex sinusoid.

8



Figure 5: Difference between Matlab and DSPSR PFB inversion implementations
for a time domain impulse located in the first procesing block.

9



Figure 6: Difference between Matlab and DSPSR PFB inversion implementations
for a simulated pulsar.

10



Figure 7: Comparison of “vanilla” DSPSR and DSPSR with PFB inversion and
dedispersion enabled when operating on simulated pulsar data.

11



data, and dedispersed it with DSPSR. For convenience, we call this DSPSR
use case “vanilla” DSPSR. We compared vanilla DSPSR to the output of using
DSPSR to invert and didisperse a channelized version of that same simulated
pulsar data. In order to compare the state of each of these signal chains, we
dumped the state of the signal before the Fold operation. Figure 7 shows one
of the coherence components for this comparison. The other three Coherence
components illustrate a similar point: the numerical difference between vanilla
DSPSR and DSPSR with PFB inversion and dedisperson enabled is below -70
dB.

12


	InverseFilterbank: FFT bases PFB inversion
	Matlab PST Signal Model Updates
	Derippling
	FFT Window Functions
	PFB Sample Alignment
	Matlab Signal Model Purity

	PFB inversion in DSPSR
	InverseFilterbank validation



