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SDP Memo Disclaimer 

The SDP memos are designed to allow the quick recording of investigations and research 
done by members of the SDP. They are also designed to raise questions about parts of the 
SDP design or SDP process. The contents of a memo may be the opinion of the author, not 
the whole of the SDP. 
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Introduction 

 
The SDP – CSP Visibility Data Interface carries streaming visibility data unidirectionally from 
the CSP to the SDP instances. It is the primary measurement data interface. The interfaces 
between SDP and CSP follow the OSI standard and are described in the respective ICDs for 
SKA1_LOW [RD07] and SKA1_MID [RD08]. Most relevantly, the OSI layers 5 to 7 - the 
session, presentation and application layers - are implemented by the SPEAD [RD01] 
protocol. OSI layer 4, the transport layer, uses UDP and OSI layer 3, the network layer, uses 
IP. The current ICDs specify a maximum allowed correlator output data rate of 0.7 TB/s for 
Low and 0.6 TB/s for Mid. This corresponds to 80 % SDP occupancy of 72 and 64 x 100 
GbE links respectively. 
 
SPEAD currently supports a number of transport mechanism, most notably the User 
Datagram Protocol (UDP), which needs to be characterized in order to function reliably over 
a particular link. Therefore, it is important to study how well SPEAD over UDP performs on a 
link like that connecting CSP and the SDP. 
 
In this memo we show our experience measuring the performance of the SPEAD UDP 
transport in different networks, including one that resembles very closely the one that will be 
connecting the SKA1-LOW and the SDP sites. We also include the description of an 
additional Transmission Control Protocol (TCP) transport implementation developed at 
ICRAR as an alternative to the default UDP transport. We compare the results of this TCP 
transports in all environments as well. Most importantly, we compare the speeds achieved 
with TCP against the data loss rate and speeds achieved by UDP. 
 
This work is part of SDP JIRA ticket TSK-2267 [RD05]. The initial description on the ticket 
included testing SPEAD stand-alone as well as together with the OSKAR [RD06] streaming 
interfaces. Given that the complexity of testing SPEAD thoroughly on its own was already 
high enough, we decided to work on SPEAD investigations directly, leaving the OSKAR part 
of the tests as future work. Our investigation also provides valuable verification information 
on the interface between CSP and SDP [RD07], and also assists in identifying and mitigating 
any associated risk in this area. Our work is complementary and does not appear to be 
duplicating any SIP work already performed or in progress. 
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SPEAD design 

 
SPEAD [RD01] is a data exchange protocol. From an application’s perspective, SPEAD 
offers the abstraction of sending or receiving updates on variables (termed ​items​) of arbitrary 
type and shape (e.g., ​a two-dimensional array of dimensions NxM of 32-bits integers​). Items 
are grouped in ​item groups​, and a ​heap​ containing the item group’s values is sent over the 
network. Multiple heaps can be sent through the same ​stream​, which represents a 
communication channel between senders and receivers. 
 
Even though SPEAD already supports a number of stream implementations, its main 
transport is the ​UDP stream​. Other stream implementations include ​ibverb​ (for efficient 
InfiniBand communications) and ​pcap​ (receiver-only, for packet capturing). Even though 
there exist multiple stream implementations, the SPEAD design assumes UDP as the 
transport mechanism in some places. The SPEAD description document [RD01] for example 
details how a heap is first split into ​packets​, which are designed to correspond one to one 
with UDP datagrams. A “start of heap” and “end of heap” mechanism is also specified as 
part of the packet exchange protocol, which is necessary in UDP streams given its 
connectionless nature. Finally, packet size is a runtime user parameter, and needs to be set 
to a value close to the Maximum Transmission Unit (MTU) of the link over which data is sent 
to achieve best performance. Most notably, even though UDP inspired most of the design, 
there is no built-in re-transmission mechanism for lost packets, nor a timeout mechanism to 
give up on receiving a particular heap. The SPEAD receiving software can still deal with 
incomplete heaps and pass them up to the application, but it is up to the application to 
implement means to deal with incomplete heaps, which in principle could handle them in 
such a state. In reality most applications probably want to be handed over fully-received 
heaps though. Moreover, the SPEAD python bindings only hand over fully-reconstructed 
heaps to the application. 
 
The SPEAD receiver software design also allows to have more than one ​reader​ receiving 
packets that logically belong to the same stream. This way one can receive packets 
belonging to the same heap from different remote endpoints (e.g., if data is generated and 
sent in parallel) and aggregate them seamlessly. 

UDP stream features 

 
The existing SPEAD UDP stream implementation features include: 
 

● It supports both unicast and multicast communication, enabling one-to-many and 
many-to-many data transfers, which would be cumbersome and costly using other 
transports. 

● It benefits from the fact that UDP transmission rates do not depend in principle on the 
delay of the link over which data is sent since there is no response sent. 

● Senders can be throttled to a specific rate. This option is made visible to applications 
so they have full control on the sending speed. 
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● Because no re-transmission is supported by SPEAD, data can be lost. This can be 
totally acceptable (up to some point) by some applications, but not by others. 
Because the loss rate over a specific link depends mostly (but not only) on the 
sending rate, careful benchmarking needs to be performed to find the speed that 
yields an acceptable loss rate. 

● Related to the previous point, and as a consequence of the serialization of heaps into 
packets, the granularity of data loss is increased as seen by the application, since 
even a single packet being lost means that the whole heap is lost. 

● A second consequence of the data loss is that losing end-of-heap packets in 
particular can lead to hanging clients. In most cases the lack of a timeout will not 
manifest itself because higher-level ring-buffers (offered by the SPEAD API) ensure 
incomplete heaps are discarded as more data arrives. There are situations however 
where a stream is meant to be shut down after receiving a finite number of heaps 
(e.g., during short-lived interactions, or during a benchmarking situation), and the 
packet signaling the end-of-heap for the last heap is missed, causing the stream to 
hang waiting for the missing packet to arrive. 

 

A TCP stream implementation for SPEAD 

 
As part of our experience we added support for TCP transport to the SPEAD protocol. Using 
TCP has inherent advantages, like built-in reception acknowledgement, retransmission, 
timeout and congestion control handling, all of which can be desirable properties in many 
scenarios. It also comes with downsides, mainly its dependency on the round-trip time (RTT) 
and proper buffer sizing to saturate network links. 
 
The SPEAD code [RD03], written in C++11, is very well documented and designed. It 
heavily uses the ​Boost.Asio​ (Asynchronous I/O) library, which encapsulates and abstracts all 
asynchronous networking operations. Given these conditions, adding an initial, non-intrusive 
sender and receiver TCP implementation that followed the current SPEAD design was fairly 
simple. On the sender side a new ​spead2::send::tcp_stream ​ class (similar to 
spead2::send::udp_stream ​) that uses TCP sockets instead of UDP sockets to send 
the SPEAD packets was created. On the receiver side, a corresponding new 
spead2::recv::tcp_reader ​ class (similar to ​spead2::recv::udp_reader ​) was 
created to receive the packets via a TCP socket. In both cases most of the logic is already 
abstracted in base classes, making the new code quite compact. Finally, we adapted the 
spead2_send ​ and ​spead2_recv ​ programs to optionally use the TCP sender and receiver 
classes respectively. Integration with the rest of the spead2 software, including the 
benchmark tools and the python bindings, is future work. 
 
In terms of protocol, the TCP connects (via ​connect(2) ​) to the TCP receiver (which listens 
via ​listen(2) ​). All the data is then sent by the sender, who finally closes the connection. 
Upon sender disconnection the receiver also disconnects and the TCP connection is then 
fully closed. 
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In principle more than one TCP reader could be used to receive packets from different 
remote endpoints into a single stream (see ​SPEAD design​), and therefore reconstruct heaps 
created in parallel, like in the case of CSP (as described in [RD07]). The ​spead2_recv ​ tool 
supports this topology (i.e., it allows more than one reader to be attached to a stream) but 
the ​spead2_send ​ tool does not, regardless of the underlying transport. Thus we were not 
able to corroborate that this functionality works. 
 
The main difference between the existing UDP transport and our TCP transport 
implementation is how SPEAD packets are treated. The SPEAD packets are designed with 
UDP in mind: once a heap is fragmented, it is very easy to send its packets over UDP, and 
to receive them and reassemble them on the receiving side. Given the nature of TCP (which 
presents the data as a stream of bytes rather than a series of messages), this fragmentation 
into SPEAD packets does not map well to how data is transported. First, the sender needs to 
notify the receiver of the size of each SPEAD packet prior to sending it. Then the receiver 
needs to read the packet size, read the data, and then reconstruct the packet. Coding and 
decoding SPEAD packets via TCP adds computational overhead and marginally increases 
the data volume (by less than 0.1% in our experiments). The number of extra bytes at the 
moment are also not reported correctly by the TCP sender class, but then again the amount 
is so small that it does not change the results. 
 
The effects described above are specific to this first implementation and are due to keeping 
changes to the code at a minimum. An alternative, more efficient TCP transport 
implementation would not fragment a heap into packets on the sender side, sending the 
contents of the heap straight out to the receiver, without having to reassemble packets (i.e., 
modifying the heap being reconstructed directly instead of creating a packet and adding it to 
the heap). This would reduce computational loads, both on the sender and receiver sides, 
and the amount of data transmitted on the wire. Again, these code changes were outside the 
scope of this exercise. 
 

SPEAD over low-latency links 

 
To get a more detailed understanding of the behavior of each transport, we tested the UDP 
and TCP transports (both over IPv4) against two different low-latency links: 
 

● Loopback: This is the ​lo​ interface in a Linux machine. The particular machine used 
for these tests (hostname ​bolano​) features an Intel Core i7-5600 CPU @ 2.6 GHz, 
and a Linux 4.13 kernel in an Ubuntu 17.10 installation. The measured RTT after 
pinging with 30 packets is 0.061 ± 0.022 [ms]. The MTU is of 65536 bytes. 

● 1G: This is a 1 [Gb/s] ethernet link between ​bolano​ and one of the machines in our 
local cluster (hostname ​sorrento​). The link requires hopping through two switches 
before reaching the destination. The measured RTT after pinging with 30 packets is 
0.298 ± 0.069 [ms]. The MTU is 1500 bytes. 

 
Before running any SPEAD benchmarks we tested both links using ​iperf​ to measure their 
maximum data exchange rates. Results are shown in ​table 1​. Each experiment was ran 5 
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times, each with a duration of 20 seconds, and used the highest possible value for 
packets/buffers being sent to avoid IP fragmentation  without changing any kernel settings. 1

 

Link UDP/IPv4 (speed, loss 
rate) 

TCP/IPv4 (speed) Comments 

Loopback 56.7 ± 0.46 [Gb/s] 
0.26 ± 0.22 [%] 

51.82 ± 1.01 [Gb/s]  

1G 810.20 ± 0.40 [Mb/s] 
99.94 ± 0.00 [%] 

935  ± 0.00 [Mb/s]  Even with sending rates of 
~50 [Mbits/s] we got loss 
rates of ~99 [%] 

Table 1​: Raw link performance using different protocols. UDP bandwidth was set differently 
depending on the maximum bandwidth of the link. 

 
These results give a maximum bandwidth value for each of the links, which allows us to 
compare the performance of the SPEAD sender/receive stacks and calculate their 
overheads. In particular, the loopback interface allows for 50+ [Gb/s] speeds both for TCP 
streams and UDP streams, with UDP transmissions (at these speeds) dropping a small 
number of packets, and being only ~10% faster than TCP (which doesn’t drop any packets). 
 
We then tested the ​spead2_send​ program sending data through the loopback interface 
against two different receivers: first, a ​light​ receiver (​iperf​ for TCP, none for UDP) to observe 
the performance of the sender in the presence of a quick receiver, and have an idea how 
fast the software stack itself runs. The second receiver used during the tests was the 
spead2_recv​ program, which allows us to understand how well the two stacks work together, 
including transmission speed and packet loss ratio (in the case of UDP). Finally, for each 
combination of protocol and receiver, we tested four different configurations: 
 

● Default​. This is the out-of-the-box experience. No tweaking is done neither on the 
sender nor in the receiver side. No kernel parameters have been changed 

● MTU​. Like ​default​, but configuring the sender and the receiver to use bigger SPEAD 
packet sizes, as close to the MTU of the link as possible. 

● Buffers​. Like ​default​, but with both the kernel maximum read/write network buffers set 
up to 16 [MB] and the application’s socket buffers set to the same amount. 

● MTU + buffers​. Including both ​MTU​ and ​buffers​ configuration changes. 
 

Light receiver 

 

 Loopback speeds against​ light​ receiver [Gb/s] 

Prot
o 

Default MTU Buffers MTU + buffers 

1 This was the MTU of the link minus the size of the IPv4 (20) and UDP (8) headers in the case of 
UDP, and the MSS reported by iperf in the case of TCP. 
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UDP 2.28 ± 0.02 43.13 ± 0.26 2.19 ± 0.08 42.83 ± 0.90 

TCP 3.09 ± 0.06 27.91 ± 0.55 3.14 ± 0.04 25.96 ± 1.62 

Table 2​: Sending speeds when running the ​spead2_send​ program against a light receiver. 
 
Table 2​ shows the sending speed of the SPEAD sender program for the two transports 
under different configurations when running over the ​loopback​ interface. Under the default 
configuration both transports clearly underperform, but increasing the SPEAD packet size 
close to the MTU size increases the speeds noticeably in both cases, while buffer sizes don’t 
affect the experiments, as expected (in the case of UDP we are not measuring loss rates, 
and in the case of TCP the round-trip is too low for the buffer sizes to make much 
difference). In their best cases the speed of both protocols are well under the network 
bandwidth limits though (as seen in the previous subsection), and therefore speeds in Table 
2 can be seen as the upper bandwidth limit at which the SPEAD sender software stack can 
work. In particular, it can be noted that SPEAD UDP senders can run up to ~43 [Gb/s], while 
SPEAD TCP senders can run up to ~28 [Gb/s]. 
 

SPEAD receiver 

Loopback interface 

 

 Speeds against​ spead2_recv​ [Gb/s] 
Heap loss rates [% of heaps] 

Prot
o 

Default MTU Buffers MTU + buffers 

UDP 2.61 ± 0.12 
2.73 ± 0.87 

37.10 ± 0.23 
99.38 ± 0.28 

2.51 ± 0.11 
0.00 ± 0.00 

24.55 ± 0.22 
99.80 ± 0.18 

TCP 3.50 ± 0.05 28.82 ± 0.21 3.58 ± 0.03 15.10 ± 0.06 
Table 3​: Sending speeds and heap loss rates when running the ​spead2_send​ program 

against the ​spead2_recv​ program. 
 
Table 3​ shows the results of running the SPEAD sender program against the corresponding 
SPEAD receiving program over the loopback interface, under different configurations, and 
using the different underlying protocols. The results are mostly similar to those against a ​light 
receiver​, except from some differences. Again, increasing the SPEAD packet size close to 
the MTU size increases the speeds noticeably. Note however how the UDP protocol misses 
a big number of heaps from the sender, even though the initial iperf tests showed a low 
datagram loss rate. This is probably due to: a) the fact that the SPEAD receiver adds an 
additional overhead due to the required deserialization of SPEAD packets into heaps, and b) 
the fact that a SPEAD heap is lost if even if just one of the contained packets is lost, 
effectively increasing the granularity of the loss. On the other hand the TCP transport 
achieved almost 30 [GB/s] of speed without loss. This shows that both the sender ​and 
receiver SPEAD TCP software stack can run at these speeds, and that any other 
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bottlenecks will be non-CPU related. Increasing the buffer sizes for this particular link was of 
no use, since the latency is so low, and it effectively lowered the data transfer rates both for 
UDP and TCP. 
 
When comparing these results to those shown in ​Light receiver​, it is interesting to note how 
adding a UDP receiver took down the maximum speed of the sender/receiver pair to ~37 
[Gb/s] (from the original ~43 [Gb/s]), while the TCP sender/receiver pair remained at the 
original ~28 [Gb/s] working speed. This result shows that (single-threaded) TCP receivers 
can work at such speeds as well, and because TCP receivers share most of the code with 
UDP receivers the same statement is most probably true for lossless UDP receivers. 
 

1 [Gb/s] interface 

 
Finally, we test the same SPEAD sender/receiver pair over a 1 [Gb/s] link. 
 

 Speeds against​ spead2_recv​ [Gb/s] 
Heap loss rates [% of heaps] 

Prot
o 

Default MTU Buffers MTU + buffers 

UDP 0.95 ± 0.00 
1.60 ± 0.65 

- 0.95 ± 0.00 
0.00 ± 0.00 

- 

TCP 0.93 ± 0.00 - 0.93 ± 0.00 - 

Table 4​: Sending speeds when running the ​spead2_send​ program against the ​spead2_recv 
program via the 1G link connecting ​bolano​ and ​sorrento​. 

 
Table 4​ shows the results of sending data from the SPEAD sender to the SPEAD receiver 
via the 1G link. The results show how UDP is faster than TCP (although only by ~2%), but 
still misses packages in the default configuration. Changing the kernel buffer maximum limit 
to a suitable value for the bandwidth of the link results in a completely lossless transmission 
for UDP. Since it is clear that using packets of size close to the MTU is the best we only 
tested that. Moreover, the SPEAD programs already default to using packets of a size that is 
safe for a standard IPv4 over Ethernet setup. 
 

SPEAD over an SKA1-like link 

 
As part of our evaluation of SPEAD we also tested the sender and receiver software over a 
fibre link connecting the Murchison Radio Observatory (MRO) with a Perth-based set of 
machines. The MRO currently houses both the ASKAP and MWA instruments, and its 
network distance to Perth is about 890 km. Because the SKA-LOW is planned to be located 
next to the MRO the distance covered by this link is effectively the same that packets will 
have to travel from the CSP correlator to the SDP system. The link is currently not used by 
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any system, and it is part of the MWA expansion to its Phase 2, and completely separate 
from the link transporting data for MWA Phase 1. 
 
An overview of the available hardware for testing (shown in Figure 1) is as follows: 
 

● At MRO, a machine (hostname ​vcs17​) with two 40 [Gb/s] interfaces is connected to a 
Cisco Nexus 9000-series switch. 

● A second machine at MRO (hostname ​medconv​) with one 10 [Gb/s] interface is 
connected to the same switch above. ​medconv​ actually has two such interfaces, but 
one of them was not in working order so could not be used for these experiments. 

● In Perth, ten machines (hostnames ​mwacache01​ to ​mwacache10​) with two 10 [Gb/s] 
interfaces each are connected to a second Cisco Nexus 9000-series switch. 

● Both switches are directly connected through a fibre link running at 100 [Gb/s]. 
 
Incidentally, this setup seems very similar to that described in [RD09], although probably a 
more thorough testing was conceived for [RD09]. 

Figure 1: 100 [Gb/s] link test setup. Computers are blue, switches orange. Green dots are 10 [Gb/s] 
senders, red dots are receivers. The MRO and Perth sites are separated by 890 [km] 

 
To use most of the bandwidth available on the 100 [GB/s] link we use the two 40 [Gb/s] 
interfaces on ​vcs17​ and the working 10 [Gb/s] interface on ​medconv​ to saturate the link from 
the sender side, which should give us a theoretical maximum sending capacity of 90 [Gb/s]. 
On the receiving side we use nine of the ten ​mwacache​ machines to receive incoming data 
on one of their 10 [Gb/s] interfaces. We start one receiver on each of the ​mwacache 
machines. Because we are limited by our receiving speed we start senders bound to no 
more than 10 [Gb/s] each. One sender is started on ​medconv​ and eight on ​vcs17​ (four 
bound to each interface). In other words, nine individual 10 [Gb/s] connections are made 
between the MRO and Perth. 
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The measured RTT of the end-to-end link after pinging with 30 packets is 8.77 ± 0.128 [ms], 
as measured between ​vcs17​ and ​mwacache01​ (and extremely similar when measured from 
medconv​). Using this measurement, and based on the fact that even on ​vcs17​ we will use 
only up to 10 [Gb/s] per connection, we set the network maximum reading or writing (as 
corresponding) buffer sizes in all machines to 12 [MB]. Jumbo packets are enabled across 
the entire system, allowing communications with an MTU of 9000 bytes. Other than that, the 
switch configuration remained unchanged. 
 

Experiment details 

 
In the following subsections we show three experiments conducted on the MRO Precursor 
Network: 
 

1. Single 10 [Gb/s] sender on each available sending interface [MRO10] 
2. Multiple senders on a single 40 [Gb/s] interface [MRO40] 
3. 9 x 10 [Gb/s] sender/receiver pairs [MRO90] 

 
During each experiment we send 50000 heaps with one item each through each individual 
10 [Gb/s] stream being setup. SPEAD packet sizes were set in all cases to 8950 bytes to 
closely match the 9000 MTU size of the link. The heap payload size was set to 4 [MB], the 
default setting on the sender program, therefore yielding ~470 packets per heap (the precise 
number depends on the amount of metadata SPEAD adds to each packet). With that 
payload size, 50000 heaps translate to almost 200 [GB] of payload data. Given the capacity 
of the link this means that even the shortest test measurement ran for more than 3 minutes, 
and that during the full deployment tests we sent close to 1.8 [TB] of data (450000 heaps) 
through the link. For UDP streams multiple sending speeds were measured using the built-in 
speed rate throttling mechanism available in SPEAD to understand the correlation between 
UDP speeds and error rates. TCP senders were left unbound to the maximum speed they 
could achieve. UDP and TCP speeds were always measured on the sending side of the 
stream, and heap loss rate on the receiver side. Aggregated speeds were calculated by 
dividing the total number of bytes sent by the total amount of time it took to finish all sender 
processes (rather than simply summing the speeds reported by the senders). The 
aggregated heap loss rate during UDP transmissions was calculated as the total number of 
heaps received over how many should have been received. 
 
It is important to note that in some cases when sending data through UDP the precise 
number of received heaps was not available. This was because the end-of-heap SPEAD 
packet was not received, which leaves the receiver (as currently implemented) in a hanging 
state waiting for such packets, as discussed in ​UDP stream features​. A timeout mechanism 
could be implemented on top of the current UDP receiver logic to detect a stalled stream and 
finish the receiving of data. 
 

Configuration MRO10: Single per-interface tests 
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To have a first idea of how well the system performs we first measure the performance of 
only three connections: two using each of ​vcs17​’s interfaces and a third using ​medconv​’s 
interface. This gives us an idea of how well ​vcs17​’s interfaces perform when sending a 
single 10 [Gb/s] stream of data, and tell us already how well the receiving end performs. 
Note that the theoretical upper bound for the transmission rate in this experiment is 30 
[Gb/s]. 
 
Results for this test are shown in Figure 2. In this configuration the maximum reasonable 
per-connection UDP speeds that can be achieved are between 9.5 [Gb/s], with a heap loss 
rate of 0.4%, and 9.6 [Gb/s] with a heap loss rate of 1.75%. These speeds yield aggregate 
speeds of ~28.3 [Gb/s] and ~28.7 [Gb/s], respectively, representing a utilization of the link of 
~95%. The UDP error rate rises dramatically when exceeding 95 % bandwidth saturation. It 
is compounded by the fact that one missing packet corrupts the complete heap. Increasing 
bandwidth saturation from 95 to 97% increases the error rate from 0.4 to 40%. Finally, 
aggregated UDP speeds scale linearly with the individual UDP rates, which is expected as 
the three streams map to three different interfaces. 

Figure 2: Performance of three parallel 10 [Gb/s] connections deployed in three different sending 
interfaces. Dark blue points are aggregated UDP speeds, red dots are UDP error rates, the dotted 
green line is the linear scaling of the individual UDP rates, and the yellow line is the aggregated TCP 
speed. UDP aggregated speeds scaled almost perfectly, while the aggregated TCP speed agrees 
almost perfectly with UDP speeds presenting no data loss. After 9.5 [Gb/s] the error rate goes up 
quickly, with values of 1.8% at 9.6 [G/bs] and 38.3% (outside of the plot) at 9.7 [Gb/s]. 
 
In the same scenario the TCP-based connections yield an aggregate speed of ~26.9 [Gb/s], 
representing a utilization of almost 90% of the link. This result corresponds quite well with 
the performance of lossless UDP. 
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Given these results, it can be said that receivers are working in good condition, that both 
switches are doing a good job at multiplexing data streams coming from different machines, 
and that both UDP and TCP transports offer good link usage. 
 

Configuration MRO40: Multiple connections, single interface tests 

 
Having studied how a single stream coming from each of the sending interfaces behave over 
the link, we now test how well multiple streams being sent from a single interface in ​vcs17 
perform. This experiment will show, in isolation, how well we can use each of these 
interfaces to effectively saturate the MRO-Perth link. This is done by starting four senders on 
vcs17​ that will use the same interface to send their data, and their respective receivers on 
the ​mwacache​ machines. 

Figure 3: Performance of four parallel 10 [Gb/s] streams being sent through the same 40 [Gb/s] 
interface. Dark blue points are aggregated UDP speeds, light blue dots are UDP error rates, the green
dotted green line is the linear scaling of the individual UDP rates, and the yellow line is the 
aggregated TCP speed. UDP aggregated speeds stop scaling and seem to saturate at around 32 
[Gb/s]. Aggregated UDP speeds with <1% data loss rates again agree with the aggregated TCP 
speed. 
 
Results for this experiment are shown in Figure 3. Like in the previous experiment, different 
UDP sending rates are sampled, but only up to 9.5 [Gb/s] in this case since we know from 
the previous experiment that individual streams already saturate at higher speeds. The first 
thing to note is how the aggregated UDP sending rate stops scaling after a certain point, 
flattening around the 32 [Gb/s] mark, representing an ~80% of the actual interface speed. 
This indicates a bottleneck somewhere else in the system , which we investigate further 
below. The aggregated UDP speed after which loss rates become greater than 1% is also 
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around 32 [Gb/s], which is very similar to that shown by the ~31 [Gb/s] speed achieved by 
the TCP backend. 
 
Regarding the bottleneck observed in the system, we know from ​Light receiver​ that SPEAD 
UDP senders can run to speeds of up to ~43 [Gb/s]. We repeated the experiment on ​vcs17​, 
and confirmed that an rate-unbound UDP sender can send data at ~45 [Gb/s] through the 
loopback interface, therefore discarding the CPU as the bottleneck. We then sent data 
through one, two, three and four UDP senders through one of the 40 [Gb/s] interfaces at 
different individual speeds. 
 
Results of these measurements can be found on Figure 4. Points represent measured 
aggregate UDP speeds for different number of parallel senders (from one to four), and lines 
show theoretical linear scales. Points and lines of the same color correspond to the same 
data rate for each individual UDP sender, with measurements ranging from 9 to 20 [Gb/s]. 
These results are consistent with the behavior we observed during the initial experiment 
depicted in Figure 3, where the maximum sending rate we targeted was using four parallel 
senders at 9.5 [Gb/s] each. In that case we observed an aggregate sending rate of around 
31 [Gb/s], while in these new results we see aggregate speeds of around 32 [Gb/s] for four 
senders running both 9 and 10 [Gb/s] individual speeds. This therefore represents the 
maximum achievable speed we can expect when using ​vcs17​’s interfaces, since all our 
experiments are constrained by the receiving speed of 10 [Gb/s]. 
 

 
Figure 4: Scaling of different number of UDP senders at individual speeds of 9, 10, 12, 14, 17 and 20 
[Gb/s]. Points show measured values, while lines sharing the same color show the theoretical linear 
scaling. Scaling deterioration can be observed both at high aggregated rates and at high individual 
rates. 
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Figure 4 also shows two main factors contributing to the scaling of the aggregate sending 
speed. The first is the fact that individual senders seem unable to send data at more than 
~17 [Gb/s]. This is visible most notably with the measurements for 20 [Gb/s] senders (red 
points and lines), where even with one sender only ~17 [Gb/s] are reached. The second 
factor is the target aggregated speed itself, with higher target data sending rates producing 
increasingly worse scaling results. This effect, depicted in Figure 5, seems to be 
independent of the individual rates or the number of senders by themselves. It is still unclear 
what is producing this bottleneck in the system, and further investigation will need to be done 
to find the exact cause. Examples of possible causes are PCIe congestion, memory 
bandwidth limitations, or other bus speeds constraining the system. 
 
Finally, it can be noted that when using four parallel senders aggregated speeds over 40 
[Gb/s] were reached. This is most probably due to the kernel dropping datagrams even 
before placing them in the network interface’s own buffer due to the high writing load.  
 
 

 
Figure 5: Scaling loss as a function of the target aggregated UDP speed. This is the same data shown
in Figure 4. The scaling loss is the difference (in percent) between each measurement (points in 
Figure 4) and its corresponding theoretical limit (lines in Figure 4). 
 

Configuration MRO90: 9 x 10 [Gb/s] Sender/Receiver Pairs 

 
Finally, an experiment with all nine 10 [Gb/s] sender/receiver streams (as shown in Figure 1) 
was executed. The purpose of this experiment was to successfully transmit as much data as 
possible in parallel through the link given its capacity, and study how well SPEAD behaves 
under these circumstances. 
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Results for this experiment are shown in Figure 6. Unlike the previous two experiments, we 
performed five different measurements for each quantity instead of a single one to present 
stable results that would smear out other temporary sources of noise, and Figure 6 shows 
the average quantities only. Like in the previous experiment, UDP aggregate speeds do not 
scale well after reaching ~50 [Gb/s], and reach a maximum of just over 63 [Gb/s] when 
individual streams are setup to send data at 9.5 [Gb/s] each (more on this below). Data 
starts getting lost at around 6.5 [Gb/s] (~56 [Gb/s] aggregated), and the situation quickly 
deteriorates from 6.75 [Gb/s] onwards, with data loss rates higher than 10%. It can also be 
seen that the aggregated UDP speed after this point does not scale as quickly as the error 
rate does, resulting on effective receiving speeds (i.e., the transmission speed of full heaps 
as measured by the receivers) that continue to decrease. The observed TCP speed, like in 
the other experiments, naturally agrees with that of a lossless or almost lossless UDP 
stream. 
 
From our previous experiment of ​Multiple connections, single interface tests​ we already 
expected a sending limit of ~32 [Gb/s] per interface on ​vcs17​. The maximum sending rate is 
however less than double that amount, which was not expected. On the other hand, and not 
visible on the plot, individual sending speeds during these experiments always had 
medconv​’s single interface performing up to expectations. In other words, we were expecting 
to see a value of ~73 [Gb/s] as the maximum sending speed. A possible explanation for this 
result is yet more contention happening in vcs17 as an effect of running even more senders 
on the system. Future experiments (outside the scope of this work) could include trying out 
different NUMA and CPU bindings and building SPEAD against more static components to 
avoid cross-node memory transfers when filling L1 instruction caches. 

 
Figure 6: Performance of all nine 10 [Gb/s] connections being sent through the same 100 [Gb/s] 
link between MRO and Perth. Dark blue points are aggregated UDP speeds, red dots are UDP 
error rirates, the green dotted green line is the linear scaling of the individual UDP rates, and the 
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yellow line is the aggregated TCP speed. Like in the previous experiment, UDP aggregated speeds 
stop scaling and saturate at around 64 [Gb/s]. Aggregated UDP speeds with <1% data loss rates 
again agree with the aggregated TCP speed with zero loss. The purple line represents the 
‘effective’ UDP transfer speed as observed by the receiver, which is defined as the total volume of 
heaps received divided by the total transfer time (or, equivalently, the aggregated UDP speed times 
the UDP error rate). 

 

Conclusions 

 
SPEAD’s design is heavily influenced by UDP; however it is up to the application to shape 
heaps and deal with packet loss. To tackle these issues and also to be able to directly 
compare achievable UDP and TCP rates, we have introduced a new TCP transport 
implementation, which offers all the benefits of TCP: transmission reliability, error detections, 
congestion control and more. These are desirable properties to many applications, and 
therefore we hope this implementation proves itself useful to the wider community. Changes 
are currently available under a fork of the original repository [RD04] and will soon be 
submitted for merging upstream. The initial implementation includes new TCP streaming 
classes, which are currently not exposed through the python bindings. An improved version 
of the TCP stream is also suggested that would not require splitting a SPEAD heap into 
packets on the sender side, and re-assembling them on the receiver side, saving CPU load 
and memory usage. 
 
We have also presented a study of how well the UDP and TCP transports performs in 
different situations, including an SKA1-LOW-sized 100 GbE link. Thanks to its clean design 
and very good and modular implementation, the SPEAD software runs very well in all 
situations. Ticking at more than 40 [Gb/s] single-threaded, the UDP transport sending stack 
is limited by parts of the system other than the CPU, like communication buses and network 
components. The performance of our TCP implementation (ticking at almost 30 [Gb/s] 
single-threaded) matches that of a lossless or near-lossless UDP transport in all situations, 
and therefore could be considered for wider usage. This also shows that the 
implementations of the TCP stacks in the various hardware and software layers involved in 
these tests provide a near optimal bandwidth utilisation with zero loss. 
 
Even if the SKA would accept a certain loss rate to gain a few percent of performance, the 
initial tuning and subsequent monitoring of the UDP loss rate would very likely require some 
kind of auto-tuning mechanism in SPEAD to cope with varying conditions, which are likely to 
occur regularly on a ~890 [km] network link. In addition our tests showed that the UDP error 
rate increases very rapidly above a certain limit, which is compatible with the achievable 
TCP rate. Increasing the UDP sending rate just a little bit above that limit increases the error 
rate extremely quickly, and therefore we have not been able to observe much benefit when 
using UDP in terms of performance v/s error. It is also unclear to us how the CSP side of the 
UDP sender implementation would look like in practice. The software implementation of the 
sender has a number of adjustable parameters, most notably the throttling rate, which would 
need to be exposed on the CSP side (in FPGA) in order to be able to maximise the transfer 
speed, while minimising the error rate. ​We thus conclude that the usage of UDP even on 
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local networks bears no benefit, but would in contrary require extremely careful 
optimisation and monitoring in an operational environment, which is both labour 
intense and risky. In view of these results we recommend to re-evaluate the decision 
of using SPEAD over UDP. 
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